Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Out-Of-Distribution Detection Is Not All You Need

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      UMR 228 Espace-Dev, Espace pour le développement; Institut de Recherche pour le Développement (IRD)-Université de Perpignan Via Domitia (UPVD)-Avignon Université (AU)-Université de La Réunion (UR)-Université de la Nouvelle-Calédonie (UNC)-Université de Guyane (UG)-Université des Antilles (UA)-Université de Montpellier (UM); Institut de Recherche pour le Développement (IRD); Équipe Tolérance aux fautes et Sûreté de Fonctionnement informatique (LAAS-TSF); Laboratoire d'analyse et d'architecture des systèmes (LAAS); Université Toulouse Capitole (UT Capitole); Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse); Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse - Jean Jaurès (UT2J); Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3); Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP); Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole); Université de Toulouse (UT); Institut de Recherche pour le Développement (IRD en Occitanie) (IRD (Occitanie)); DTIS, ONERA, Université de Toulouse Toulouse; ONERA-PRES Université de Toulouse; ANR-19-P3IA-0004,ANITI,Artificial and Natural Intelligence Toulouse Institute(2019)
    • بيانات النشر:
      CCSD
    • الموضوع:
      2023
    • Collection:
      ONERA: HAL (Centre français de recherche aérospatiale / French Aerospace Lab)
    • الموضوع:
    • الموضوع:
      Washington DC, United States
    • نبذة مختصرة :
      International audience ; The usage of deep neural networks in safety-critical systems is limited by our ability to guarantee their correct behavior. Runtime monitors are components aiming to identify unsafe predictions and discard them before they can lead to catastrophic consequences. Several recent works on runtime monitoring have focused on out-of-distribution (OOD) detection, i.e., identifying inputs that are different from the training data. In this work, we argue that OOD detection is not a well-suited framework to design efficient runtime monitors and that it is more relevant to evaluate monitors based on their ability to discard incorrect predictions. We call this setting out-ofmodel-scope detection and discuss the conceptual differences with OOD. We also conduct extensive experiments on popular datasets from the literature to show that studying monitors in the OOD setting can be misleading: 1. very good OOD results can give a false impression of safety, 2. comparison under the OOD setting does not allow identifying the best monitor to detect errors. Finally, we also show that removing erroneous training data samples helps to train better monitors.
    • Relation:
      info:eu-repo/semantics/altIdentifier/arxiv/2211.16158; ARXIV: 2211.16158; IRD: fdi:010090489
    • الرقم المعرف:
      10.1609/aaai.v37i12.26732
    • الدخول الالكتروني :
      https://laas.hal.science/hal-03870531
      https://laas.hal.science/hal-03870531v2/document
      https://laas.hal.science/hal-03870531v2/file/main.pdf
      https://doi.org/10.1609/aaai.v37i12.26732
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.3A0BCDAC