Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

3D effects on hydrogen transport in ITER-like monoblocks

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Institut de Recherche sur la Fusion par confinement Magnétique (IRFM); Direction de Recherche Fondamentale (CEA) (DRF (CEA)); Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA); Laboratoire des Sciences des Procédés et des Matériaux (LSPM); Institut Galilée-Université Sorbonne Paris Cité (USPC)-Centre National de la Recherche Scientifique (CNRS)-Université Sorbonne Paris Nord; ANR-18-CE05-0012,WHeSCI,Etudes fondamentales sur W, H et He par une approche intégrée(2018); European Project: 101052200,Implementation of activities described in the Roadmap to Fusion during Horizon Europe through a joint programme of the members of the EUROfusion consortium,EUROfusion
    • بيانات النشر:
      CCSD
      IOP Publishing
    • الموضوع:
      2023
    • Collection:
      Université Paris 13: HAL
    • نبذة مختصرة :
      International audience ; The influence of recombination on the poloidal gaps of ITER-like monoblocks on hydrogen transport simulations is investigated. A 3D FESTIM model is first built and transient simulations up to 1 × 10 7 s of continuous exposure are run with or without instantaneous recombination on the poloidal gaps. In the case of instantaneous recombination, the poloidal gaps act as a strong sink for hydrogen leading to a decrease in the monoblock inventory. The total desorption flux on the poloidal gap is greater than on the toroidal gap but remains orders of magnitude lower than the retro-desorbed flux at the top surface. For a monoblock thickness of 4 mm, the relative difference in the hydrogen inventory per unit thickness between the two cases is 500%. As the thickness of the monoblock increases, this difference decreases (55% at 14 mm). The monoblock's response to baking is then studied at different baking temperatures. At 600 K, almost all the hydrogen content in the monoblock is removed after 15 days of baking. Assuming a non-instantaneous recombination on the tungsten surfaces would not have a major impact on the monoblock desorption for baking temperatures above 600 K.
    • Relation:
      info:eu-repo/grantAgreement//101052200/EU/EUROfusion/EUROfusion
    • الرقم المعرف:
      10.1088/1741-4326/ad1019
    • الدخول الالكتروني :
      https://cea.hal.science/cea-04765603
      https://cea.hal.science/cea-04765603v1/document
      https://cea.hal.science/cea-04765603v1/file/Delaporte-Mathurin_2024_Nucl._Fusion_64_026003.pdf
      https://doi.org/10.1088/1741-4326/ad1019
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.396D7D03