Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Deep Learning from Phylogenies for Diversification Analyses

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Institut de biologie de l'ENS Paris (IBENS); Département de Biologie - ENS Paris; École normale supérieure - Paris (ENS-PSL); Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL); Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS); Département de Biologie Computationnelle - Department of Computational Biology; Institut Pasteur Paris (IP)-Université Paris Cité (UPCité); SL was supported by PSL IRIS Science des données, données de la science and the Fondation pour la Recherche Médicale (FDT202106013269). JV was supported by the Ecole Normale Supérieure Paris-Saclay and by ED Frontières de l'Innovation en Recherche et Education, Programme Bettencourt. HM acknowledges funding from ERC-CoG grant PANDA; ANR-16-CONV-0005,INCEPTION,Institut Convergences pour l'étude de l'Emergence des Pathologies au Travers des Individus et des populatiONs(2016); European Project: 616419,EC:FP7:ERC,ERC-2013-CoG,PANDA(2014)
    • بيانات النشر:
      HAL CCSD
      Oxford University Press (OUP)
    • الموضوع:
      2023
    • نبذة مختصرة :
      International audience ; Birth-death models are widely used in combination with species phylogenies to study past diversification dynamics. Current inference approaches typically rely on likelihood-based methods. These methods are not generalizable, as a new likelihood formula must be established each time a new model is proposed; for some models such formula is not even tractable. Deep learning can bring solutions in such situations, as deep neural networks can be trained to learn the relation between simulations and parameter values as a regression problem. In this paper, we adapt a recently developed deep learning method from pathogen phylodynamics to the case of diversification inference, and we extend its applicability to the case of the inference of state-dependent diversification models from phylogenies associated with trait data. We demonstrate the accuracy and time efficiency of the approach for the time constant homogeneous birth-death model and the Binary-State Speciation and Extinction model. Finally, we illustrate the use of the proposed inference machinery by reanalyzing a phylogeny of primates and their associated ecological role as seed dispersers. Deep learning inference provides at least the same accuracy as likelihood-based inference while being faster by several orders of magnitude, offering a promising new inference approach for deployment of future models in the field.
    • Relation:
      info:eu-repo/semantics/altIdentifier/pmid/37556735; info:eu-repo/grantAgreement/EC/FP7/616419/EU/Phylogenetic ANalysis of Diversification Across the tree of life/PANDA; PUBMED: 37556735
    • الرقم المعرف:
      10.1093/sysbio/syad044
    • الدخول الالكتروني :
      https://hal.science/hal-04294867
      https://hal.science/hal-04294867v1/document
      https://hal.science/hal-04294867v1/file/LambertetalSystBio2023%20%281%29.pdf
      https://doi.org/10.1093/sysbio/syad044
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.384E22CE