Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Modelo de previsão hidrológica utilizando redes neurais artificiais: um estudo de caso na bacia do Rio Xingu- Altamira-Pa ; Hydrological forecasting model using artificial neural networks: a case study in the Xingu-Altamira-Pa basin

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      CASTRO, Adriana Rosa Garcez; http://lattes.cnpq.br/5273686389382860
    • بيانات النشر:
      Universidade Federal do Pará
      Brasil
      Instituto de Tecnologia
      UFPA
      Programa de Pós-Graduação em Engenharia Elétrica
    • الموضوع:
      2020
    • Collection:
      Universidade Federal do Pará: Repositório Institucional da UFPA
    • نبذة مختصرة :
      Knowledge about the extent of riverbed overflow is extremely necessary for the determination of areas at risk. The City of Altamira-PA, located on the banks of the Xingu River, historically suffers from extreme events of floods that provoke floods, causing great damages to the population. Considering the problem, this paper presents a monthly level prediction system of the Xingu River based on neural networks perceptron of multiple layers. For the development of the system, rainfall data were used in the basin and sub-basins of the Xingu River, and SST information (Sea Surface Temperature) from 1979 to 2016. The Satisfactory results demonstrate the great applicability of Artificial Neural Networks to the flood prediction problem, as compared to other methodologies have greater precision in finding solutions for nonlinear problems. For the treatment and selection of the input variables, the correlation approach was used, with the objective of improving the accuracy of the results, thus selecting the best information with their respective lags, in which they are inserted in three prediction scenarios: model with rainfall data, model with sea surface temperature information and application using the SST junction with rainfall. To measure the prediction capacity of the proposed methods, the Mean Squared Error (MSE) and coefficient of determination (R²) values were obtained for the best strategy, using only oceanic variables, SST, being the values 2,99x104 and 0,9991 considering, mainly, the treatment of input values of the Neural Network. ; O conhecimento acerca da amplitude do transbordamento dos leitos fluviais é extremamente necessário para determinação das áreas de risco. A cidade de Altamira-PA, localizada às margens do rio Xingu, vem sofrendo com casos extremos de cheias que tendem a provocar inundações, resultando em severos prejuízos para a sua população. Considerando o problema, este trabalho apresenta a proposta de um sistema de previsão de nível mensal do Rio Xingu baseado em Redes Neurais Artificiais ...
    • File Description:
      application/pdf
    • Relation:
      SILVA, Arilson Galdino da. Modelo de previsão hidrológica utilizando redes neurais artificiais: um estudo de caso na bacia do Rio Xingu- Altamira-Pa. Orientadora: Adriana Rosa Garcez Castro 2019. 69 f. Dissertação (Mestrado em Engenharia Elétrica) - Instituto de Tecnologia, Universidade Federal do Pará, ,Belém, 2019. Disponível em:http://repositorio.ufpa.br:8080/jspui/handle/2011/12190 . Acesso em:.; http://repositorio.ufpa.br:8080/jspui/handle/2011/12190
    • الدخول الالكتروني :
      http://repositorio.ufpa.br:8080/jspui/handle/2011/12190
    • Rights:
      Acesso Aberto
    • الرقم المعرف:
      edsbas.3806A166