نبذة مختصرة : Resilient post-disaster recovery is crucial for the long-term sustainable development of modern cities, and in this regard, predicting the unusual flows of human mobility when disasters hit, could offer insights into how emergency responses could be managed to cope with such unexpected shocks more efficiently. For years, many studies have been dedicated to developing various models to predict human movement; however, abnormal human flows caused by large-scale urban disasters, such as urban floods, remain difficult to capture accurately using existing models. In this paper, we propose a spatiotemporal hybrid deep learning model based on a graph convolutional network and long short-term memory with a spatial heterogeneity component. Using 1.32 billion movement records from smartphone users, we applied the model to predict total hourly flows of human mobility in the “7.20” extreme urban flood in Zhengzhou, China. We found that the proposed model can significantly improve the prediction accuracy (i.e., R2 from ...
No Comments.