Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Making complex things simpler: modern tools to edit the plant genome ; Сделать сложное проще: современный инструментарий для редактирования генома растений

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      Institute of Cytology and Genetics of Siberian Branch of the RAS
    • الموضوع:
      2017
    • Collection:
      Vavilov Journal of Genetics and Breeding / Вавиловский журнал генетики и селекции
    • نبذة مختصرة :
      There are several technologies for plant genome editing, of which the most simple and universal is CRISPR/Cas. Currently, this technology is widely used for gene knockout, deleting genome fragments and inserting exogenous sequences in the plant genome. For each of these applications, many different types of genetic tools have been developed that are used by various research groups to solve specific problems. The CRISPR/Cas technology for plant genome editing is at an early stage of optimization, which is reflected by the ongoing search for the most effective, simple and flexible techniques. As a result, experimental work has to be preceded by a rather long and laborious process of selecting a genetic tool that will be optimal for a specific experimental task. In our review we describe the main variants of the CRISPR/Cas technology used to edit a plant genome. We classify them in terms of experimental tasks solved, major components and technology performance. In the first half of the review a detailed description of two major components of CRISPR/Cas technology – nuclease and guide RNA – is given, the effect of structural features of these elements on editing efficiency is analyzed. Experimental data on the relationship between editing efficiency and nucleotide sequence of guide RNA are generalized. We also give the characteristic for different variants of nucleases used for plant genome editing and discuss their benefits for different experimental purposes. In the second half of the review various strategies for expression of CRISPR/Cas elements in plant cells, in particular, advantages and disadvantages of stable transformation and transient expression, are discussed. The effect of various regulatory elements of genes encoding nuclease and guide RNA on editing efficiency is described. Special emphasis is placed on the techniques of increasing targeted gene replacement efficiency. ; Существует несколько технологий редактирования генома растений, из которых наиболее простой и универсальной является CRISPR/Cas. В ...
    • File Description:
      application/pdf
    • Relation:
      https://vavilov.elpub.ru/jour/article/view/909/884; Andersson M., Turesson H., Nicolia A., Fält A.S., Samuelsson M., Hofvander P. Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts. Plant Cell Reports. 2016;1-12. DOI 10.1007/s00299016-2062-3.; Baltes N.J., Gil-Humanes J., Cermak T., Atkins P.A., Voytas D.F. DNA replicons for plant genome engineering. Plant Cell. 2014;26(1):151163. DOI 10.1105/tpc.113.119792.; Bortesi L., Fischer R. The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol. Advances. 2015;33(1):41-52. DOI 10.1016/j.biotechadv.2014.12.006.; Butler N.M., Baltes N.J., Voytas D.F., Douches D.S. Geminivirusmediated genome editing in potato (Solanum tuberosum L.) using sequence-specific nucleases. Front. Plant Sci. 2016;7:1045. DOI 10.3389/fpls.2016.01045.; Čermák T., Baltes N.J., Čegan R., Zhang Y., Voytas D.F. High-frequency, precise modification of the tomato genome. Genome Biology. 2015;16(1):1. DOI 10.1186/s13059-015-0796-9.; Cong L., Ran F.A., Cox D., Lin S., Barretto R., Habib N., Hsu P.D., Wu X., Jiang W., Marraffini L.A., Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819823. DOI 10.1126/science.1231143.; Chugunova A A., Dontsova O.A., Sergiev P.V. Methods of genome engineering: a new era of molecular biology. Biomeditsinskaya Khimiya = Biomedical Chemistry (Moscow). 2016;81(7):662-677. DOI 10.1134/S0006297916070038. (in Russian); Ding Y., Li H., Chen L.L., Xie K. Recent advances in genome editing using CRISPR/Cas9. Front. Plant Sci. 2016;7:703. DOI 10.3389/fpls.2016.00703.; Endo M., Mikami M., Toki S. Multi-gene knockout utilizing off-target mutations of the CRISPR/Cas9 system in rice. Plant Cell Physiol. 2014;56(1):41-47. DOI 10.1093/pcp/pcu154.; Fauser F., Roth N., Pacher M., Ilg G., Sánchez-Fernández R., Biesgen C., Puchta H. In planta gene targeting. Proc. Natl. Acad. Sci. USA. 2012;109(19):7535-7540. DOI 10.1073/pnas.1202191109.; Fauser F., Schiml S., Puchta H. Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. PlantJ. 2014;79(2):348-359. DOI 10.1111/tpj.12554.; Fonfara I., Le Rhun A., Chylinski K., Makarova K.S., Lécrivain A.L., Bzdrenga J., Koonin E.V., Charpentier E. Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucl. Acids Res. 2014; 42(4):2577-2590. DOI 10.1093/nar/gkt1074.; Fu Y., Sander J.D., Reyon D., Cascio V.M., Joung J.K. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nature Biotechnol. 2014;32(3):279-284. DOI 10.1038/nbt.2808.; Gagnon J.A., Valen E., Thyme S.B., Huang P., Ahkmetova L., Pauli A., Montague T.G., Zimmerman S., Richter C., Schier A.F. Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs. PloS ONE. 2014; 9(5):e98186. DOI 10.1371/journal.pone.0098186.; Hsu P.D., Scott D.A., Weinstein J.A., Ran F.A., Konermann S., Agarwala V., Li Y., Fine E.J., Wu X., Shalem O., Cradick T.J., Marraffini L.A., Bao G., Zhang F. DNA targeting specificity of RNA-guided Cas9 nucleases. Nature Biotechnol. 2013;31(9):827-832. DOI 10.1038/nbt.2647.; Hyun Y., Kim J., Cho S.W., ChoiY., Kim J.S., Coupland G. Site-directed mutagenesis in Arabidopsis thaliana using dividing tissue-targeted RGEN of the CRISPR/Cas system to generate heritable null alleles. Planta. 2015;241(1):271-284. DOI 10.1007/s00425-014-2180-5.; Jasin M., Haber J.E. The democratization of gene editing: Insights from site-specific cleavage and double-strand break repair. DNA Repair. 2016;44:6-16. DOI 10.1016/j.dnarep.2016.05.001.; Jiang W., Zhou H., Bi H., Fromm M., Yang B., Weeks D.P. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucl. Acids Res. 2013; 41(20):e188. DOI 10.1093/nar/gkt780.; Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., Charpentier E. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816-821. DOI 10.1126/science.1225829.; Johnson R.A., Gurevich V., Filler S., Samach A., Levy A.A. Comparative assessments of CRISPR-Cas nucleases’ cleavage efficiency in planta. Plant Mol. Biol. 2015;87(1-2):143-156. DOI 10.1126/science. 1225829.; Karvelis T., Gasiunas G., Young J., Bigelyte G., Silanskas A., Cigan M., Siksnys V. Rapid characterization of CRISPR-Cas9 protospacer adjacent motif sequence elements. Genome Biol. 2015;16(1):1. DOI 10.1186/s13059-015-0818-7.; Labun K., Montague T.G., Gagnon J.A., Thyme S.B., Valen E. CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering. Nucl. Acids Res. 2016;44(W1):W272-6. DOI 10.1093/nar/gkw398.; Li J.F., Norville J.E., Aach J., McCormack M., Zhang D., Bush J., Church G.M., Sheen J. Multiplex and homologous recombinationmediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnol. 2013;31(8):688691. DOI 10.1038/nbt.2654.; Li Z., Liu Z.B., Xing A., Moon B.P., Koellhoffer J.P., Huang L., Ward R.T., Clifton E., Falco S.C., Cigan A.M. Cas9-guide RNA directed genome editing in soybean. Plant Physiol. 2015;169(2):960970. DOI 10.1104/pp.15.00783.; Lowder L.G., Zhang D., Baltes N.J., Paul III J.W., Tang X., Zheng X., Voytas D.F., Hsieh T.-F., Zhang Y., Qi Y. A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol. 2015;169(2):971-985. DOI 10.1104/pp.15.00636.; Luo M., Gilbert B., Ayliffe M. Applications of CRISPR/Cas9 technology for targeted mutagenesis, gene replacement and stacking of genes in higher plants. Plant Cell Reports. 2016;35:1-12. DOI 10.1007/s00299-016-1989-8.; Ma X., Zhang Q., Zhu Q., Liu W., Chen Y., Qiu R., Wang B., Yang Z., Li H., Lin Y., Xie Y., Shen R., Chen S., Wang Z., Chen Y., Guo J., Chen L., Zhao X., Dong Z., Liu Y.G. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol. Plant. 2015;8(8):1274-1284. DOI 10.1016/j.molp.2015.04.007.; Mali P., Aach J., Stranges P.B., Esvelt K.M., Moosburner M., Kosuri S., Yang L., Church G.M. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nature Biotechnol. 2013;31(9):833-838. DOI 0.1038/nbt.2675.; Mao Y., Zhang H., Xu N., Zhang B., Gou F., Zhu J.K. Application of the CRISPR-Cas system for efficient genome engineering in plants. Mol. Plant. 2013;6(6):2008-2011. DOI 10.1093/mp/sst121.; Mao Y., Zhang Z., Feng Z., Wei P., Zhang H., Botella J.R., Zhu J.K. Development of germ-line-specific CRISPR-Cas9 systems to improve the production of heritable gene modifications in Arabidopsis. Plant Biotechnol. J. 2016;14(2):519-532. DOI 10.1111/pbi.12468.; Miao J., Guo D., Zhang J., Huang Q., Qin G., Zhang X., Wan J., Gu H., Qu L.J. Targeted mutagenesis in rice using CRISPR-Cas system. Cell Research. 2013;23(10):1233-1236. DOI 10.1038/cr.2013.123.; Mikami M., Toki S., Endo M. Comparison of CRISPR/Cas9 expression constructs for efficient targeted mutagenesis in rice. Plant Mol. Biol. 2015a;88(6):561-572. DOI 10.1007/s11103-015-0342-x.; Mikami M., Toki S., Endo M. Parameters affecting frequency of CRISPR/Cas9 mediated targeted mutagenesis in rice. Plant Cell Reports. 2015b;34(10):1807-1815. DOI 10.1007/s00299-015-1826-5.; Mikami M., Toki S., Endo M. Precision targeted mutagenesis via Cas9 paired nickases in rice. Plant Cell Physiol. 2016;57(5):1058-1068. DOI 10.1093/pcp/pcw049.; Nekrasov V., Staskawicz B., Weigel D., Jones J.D., Kamoun S. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nature Biotechnol. 2013;31(8):691693. DOI 10.1038/nbt.2655.; Nishimasu H., Ran F.A., Hsu P.D., Konermann S., Shehata S.I., Dohmae N., Ishitani R., Zhang F., Nureki O. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell. 2014;156(5):935949. DOI 10.1016/j.cell.2014.02.001.; Osakabe Y., Watanabe T., Sugano S.S., Ueta R., Ishihara R., Shinozaki K., Osakabe K. Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants. Sci. Reports. 2016;6: 26685. DOI 10.1038/srep26685.; Paul III J.W., Qi Y. CRISPR/Cas9 for plant genome editing: accomplishments, problems and prospects. Plant Cell Reports. 2016;1-11. DOI 10.1007/s00299-016-1985-z.; Periwal V. A comprehensive overview of computational resources to aid in precision genome editing with engineered nucleases. Brief. Bioinform. 2016;1-14. DOI 10.1093/bib/bbw052.; Puchta H., Dujon B., Hohn B. Homologous recombination in plant cells is enhanced by in vivo induction of double strand breaks into DNA by a site-specific endonuclease. Nucl. Acids Res. 1993;21(22):50345040. DOI 10.1093/nar/21.22.5034.; Puchta H., Fauser F. Synthetic nucleases for genome engineering in plants: prospects for a bright future. Plant J. 2014;78(5):727-741. DOI 10.1111/tpj.12338.; Qi Y., Zhang Y., Zhang F., Baller J.A., Cleland S.C., Ryu Y., Starker C.G., Voytas D.F. Increasing frequencies of site-specific mutagenesis and gene targeting in Arabidopsis by manipulating DNA repair pathways. Genome Res. 2013;23(3):547-554. DOI 10.1101/gr.145557.112.; Savitskaya E.E., Musharova O.S., Severinov K.V. Diversity of CRISPRCas-mediated mechanisms of adaptive immunity in prokaryotes and their application in biotechnology. Biomeditsinskaya Khimiya = Biomedical Chemistry (Moscow). 2016;81(7):653-661. DOI 10.1134/S0006297916070026. (in Russian); Schaeffer S.M., Nakata P.A. The expanding footprint of CRISPR/Cas9 in the plant sciences. Plant Cell Reports. 2016;35(7):1451-1468. DOI 10.1007/s00299-016-1987-x.; Schiml S., Fauser F., Puchta H. The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny. Plant J. 2014;80(6):1139-1150. DOI 10.1111/tpj.12704.; Shan Q., Wang Y., Li J., Zhang Y., Chen K., Liang Z., Zhang K., Liu J., Xi J.J., Qiu J.L., Gao C. Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnol. 2013;31(8):686688. DOI 10.1038/nbt.2650.; Song G., Jia M., Chen K., Kong X., Khattak B., Xie C., Li A., Mao L. CRISPR/Cas9: A powerful tool for crop genome editing. Crop J. 2016;4(2):75-82. DOI 10.1016/j.cj.2015.12.002.; Steinert J., Schiml S., Fauser F., Puchta H. Highly efficient heritable plant genome engineering using Cas9 orthologues from Streptococcus thermophilus and Staphylococcus aureus. Plant J. 2015;84(6): 1295-1305. DOI 10.1111/tpj.13078.; Sun X., Hu Z., Chen R., Jiang Q., Song G., Zhang H., Xi Y. Targeted mutagenesis in soybean using the CRISPR-Cas9 system. Sci. Reports. 2015;5:10342. DOI 10.1038/srep10342.; Sun Y., Zhang X., Wu C., He Y., Ma Y., Hou H., Guo X., Du W., Zhao Y., Xia L. Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase. Mol. Plant. 2016;9(4):628-631. DOI 10.1016/j.molp.2016.01.001.; Svitashev S., Young J.K., Schwartz C., Gao H., Falco S.C., Cigan A.M. Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol. 2015; 169(2):931-945. DOI 10.1104/pp.15.00793.; Wang Y., Cheng X., Shan Q., Zhang Y., Liu J., Gao C., Qiu J.L. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnol. 2014;32(9):947-951. DOI 10.1038/nbt.2969.; Wang Z.P., Xing H.L., Dong L., Zhang H.Y., Han C.Y., Wang X.C., Chen Q.J. Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biol. 2015;16(1):144. DOI 10.1186/s13059-015-0715-0.; Xie K., Yang Y. RNA-guided genome editing in plants using a CRISPR-Cas system. Mol. Plant. 2013;6(6):1975-1983. DOI 10.1093/mp/sst119.; Xie K., Zhang J., Yang Y. Genome-wide prediction of highly specific guide RNA spacers for CRISPR-Cas9-mediated genome editing in model plants and major crops. Mol. Plant. 2014;7(5):923-926. DOI 10.1093/mp/ssu009.; Xing H.L., Dong L., Wang Z.P., Zhang H.Y., Han C.Y., Liu B., Wang X.C., Chen Q.J. A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol. 2014;14(1):1. DOI 10.1186/s12870-014-0327-y.; Yan L., Wei S., Wu Y., Hu R., Li H., Yang W., Xie Q. High-efficiency genome editing in Arabidopsis using YAO promoter-driven CRISPR/Cas9 system. Mol. Plant. 2015;8(12):1820-1823. DOI 10.1016/j.molp.2015.10.004.; Zaidi S.S.E.A., Mansoor S., Ali Z., Tashkandi M., Mahfouz M.M. Engineering plants for geminivirus resistance with CRISPR/Cas9 system. Trends Plant Sci. 2016;21(4):279-281. DOI 10.1016/j.tplants.2016.01.023.; Zhang H., Zhang J., Wei P., Zhang B., Gou F., Feng Z., Mao Y., Yang L., Zhang H., Xu N., Zhu J.K. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol. J. 2014;12(6):797-807. DOI 10.1111/pbi.12200.; https://vavilov.elpub.ru/jour/article/view/909
    • الرقم المعرف:
      10.18699/VJ17.228
    • Rights:
      Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). ; Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
    • الرقم المعرف:
      edsbas.365331