Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Low thermal conductivity in a modular inorganic material with bonding anisotropy and mismatch

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      University of Liverpool; Department of Chemistry University College of London; University College of London London (UCL); Science and Technology Facilities Council (STFC); Laboratoire de cristallographie et sciences des matériaux (CRISMAT); Université de Caen Normandie (UNICAEN); Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN); Normandie Université (NU)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Matériaux Avancés (IRMA); Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN); Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie); Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN); Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
    • بيانات النشر:
      HAL CCSD
      American Association for the Advancement of Science (AAAS)
    • الموضوع:
      2021
    • Collection:
      Normandie Université: HAL
    • نبذة مختصرة :
      International audience ; The thermal conductivity of crystalline materials cannot be arbitrarily low, as the intrinsic limit depends on the phonon dispersion. We used complementary strategies to suppress the contribution of the longitudinal and transverse phonons to heat transport in layered materials that contain different types of intrinsic chemical interfaces. BiOCl and Bi2O2Se encapsulate these design principles for longitudinal and transverse modes, respectively, and the bulk superlattice material Bi4O4SeCl2 combines these effects by ordering both interface types within its unit cell to reach an extremely low thermal conductivity of 0.1 watts per kelvin per meter at room temperature along its stacking direction. This value comes within a factor of four of the thermal conductivity of air. We demonstrated that chemical control of the spatial arrangement of distinct interfaces can synergically modify vibrational modes to minimize thermal conductivity.
    • Relation:
      hal-03377955; https://hal.science/hal-03377955; https://hal.science/hal-03377955/document; https://hal.science/hal-03377955/file/Zhao_Accepted_main_text.pdf
    • الرقم المعرف:
      10.1126/science.abh1619
    • الدخول الالكتروني :
      https://hal.science/hal-03377955
      https://hal.science/hal-03377955/document
      https://hal.science/hal-03377955/file/Zhao_Accepted_main_text.pdf
      https://doi.org/10.1126/science.abh1619
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.35FF8C19