Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Prepoznavanje gesta za upravljanje dronom korištenjem YOLO algoritma ; Gesture recognition for drone control using YOLO algorithm

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Car, Zlatan
    • بيانات النشر:
      Sveučilište u Rijeci. Tehnički fakultet.
      University of Rijeka. Faculty of Engineering.
    • الموضوع:
      2024
    • Collection:
      Repository of the University of Rijeka
    • نبذة مختصرة :
      U ovom diplomskom radu prezentirana je detekcija objekata primjenom YOLO algoritma. Rad započinje s uvođenjem osnovnih pojmova vezanih za umjetne neuronske mreže te se problematika postepeno nadograđuje na konvolucijske neuronske mreže koje igraju ključnu ulogu kada se govori o detekciji objekata i računalnom vidu općenito. Također, uvode se evaluacijske metrike koje se koriste za procjenu uspješnosti modela. Nakon stvaranja teorijske podloge, rad nastavlja s praktičnom primjenom navedenih alata u obliku YOLOv9 algoritma koji je trenutno jedan od najmodernijih i najbržih pristupa detekciji objekata. YOLOv9 algoritam treniran je da prepozna naredbe dane gestikulacijom ruku i tijela s ciljem upravljanja dronom. Subjekt može izdati naredbu "poleti", "sleti" ili "slijedi" te svaku od njih može dati ili položajem svoga tijela i/ili rukom što ukupno čini 6 različitih klasa koje je potrebno detektirati. Na kraju rada model je ispitan na detekciji u stvarnom vremenu koristeci RTMP protokol. ; In this master’s thesis, object detection using the YOLO algorithm is presented. Thesis begins with the introduction of basic concepts related to artificial neural networks and is gradually upgraded to convolutional neural networks, which play a key role when talking about object detection and computer vision in general. Also, the evaluation metrics that are used to evaluate the performance of the model are introduced. After creating the theoretical basis, the thesis continues with the practical application of the mentioned tools in the form of the YOLOv9 algorithm, which is currently one of the most modern and fastest approaches to object detection. The YOLOv9 algorithm is trained to recognize commands given by hand and body gestures in order to control the drone. The subject can give the command "take off", "land", or "follow", and each of them can be given either by the position of their body and/or by their hand, which makes a total of 6 different classes that need to be detected. At the end of the thesis, the model was tested ...
    • File Description:
      application/pdf
    • Relation:
      https://www.unirepository.svkri.uniri.hr/islandora/object/riteh:4554; https://urn.nsk.hr/urn:nbn:hr:190:553445; https://www.unirepository.svkri.uniri.hr/islandora/object/riteh:4554/datastream/PDF
    • الدخول الالكتروني :
      https://www.unirepository.svkri.uniri.hr/islandora/object/riteh:4554
      https://urn.nsk.hr/urn:nbn:hr:190:553445
      https://www.unirepository.svkri.uniri.hr/islandora/object/riteh:4554/datastream/PDF
    • Rights:
      http://creativecommons.org/licenses/by/4.0/ ; info:eu-repo/semantics/openAccess
    • الرقم المعرف:
      edsbas.35FD6FA