Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Skeleton point trajectories for human daily activity recognition

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Département Intelligence Ambiante et Systèmes Interactifs (DIASI (CEA, LIST)); Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)); Direction de Recherche Technologique (CEA) (DRT (CEA)); Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Technologique (CEA) (DRT (CEA)); Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay; Mines Paris - PSL (École nationale supérieure des mines de Paris); Université Paris Sciences et Lettres (PSL); Institut des Systèmes Intelligents et de Robotique (ISIR); Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)
    • بيانات النشر:
      HAL CCSD
    • الموضوع:
      2013
    • Collection:
      HAL-CEA (Commissariat à l'énergie atomique et aux énergies alternatives)
    • الموضوع:
    • الموضوع:
      Barcelona, Spain
    • نبذة مختصرة :
      Conference of 8th International Conference on Computer Vision Theory and Applications, VISAPP 2013 ; Conference Date: 21 February 2013 Through 24 February 2013; Conference Code:97053 ; International audience ; Automatic human action annotation is a challenging problem, which overlaps with many computer vision fields such as video-surveillance, human-computer interaction or video mining. In this work, we offer a skeleton based algorithm to classify segmented human-action sequences. Our contribution is twofold. First, we offer and evaluate different trajectory descriptors on skeleton datasets. Six short term trajectory features based on position, speed or acceleration are first introduced. The last descriptor is the most original since it extends the well-known bag-of-words approach to the bag-of-gestures ones for 3D position of articulations. All these descriptors are evaluated on two public databases with state-of-the art machine learning algorithms. The second contribution is to measure the influence of missing data on algorithms based on skeleton. Indeed skeleton extraction algorithms commonly fail on real sequences, with side or back views and very complex postures. Thus on these real data, we offer to compare recognition methods based on image and those based on skeleton with many missing data.
    • Relation:
      cea-01844715; https://cea.hal.science/cea-01844715; https://cea.hal.science/cea-01844715/document; https://cea.hal.science/cea-01844715/file/ChanHongTong2013.pdf
    • الدخول الالكتروني :
      https://cea.hal.science/cea-01844715
      https://cea.hal.science/cea-01844715/document
      https://cea.hal.science/cea-01844715/file/ChanHongTong2013.pdf
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.35464532