Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Predicting creative behavior using resting-state electroencephalography

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Centre d'Investigation Clinique Rennes (CIC); Université de Rennes (UR)-Centre Hospitalier Universitaire de Rennes CHU Rennes = Rennes University Hospital Pontchaillou -Institut National de la Santé et de la Recherche Médicale (INSERM); CIC-IT Rennes; Centre Hospitalier Universitaire de Rennes CHU Rennes = Rennes University Hospital Pontchaillou -Institut National de la Santé et de la Recherche Médicale (INSERM); Institut des Neurosciences Cliniques de Rennes = Institute of Clinical Neurosciences of Rennes (INCR); Centre de Recherche en Psychologie et Neurosciences (CRPN); Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS); Centre Hospitalier Universitaire de Rennes CHU Rennes = Rennes University Hospital Pontchaillou; MINDig; Reykjavík University; Laboratoire Interdisciplinaire pour l'Innovation et la Recherche en Santé d’Orléans (LI2RSO); Université d'Orléans (UO); This work was partly funded by a Research Grant from the biology and health doctoral school at the University of Rennes. We thank the CECAP association « Comité d’entente et de coordination des associations de parkinsoniens » for partly supporting the study.
    • بيانات النشر:
      HAL CCSD
      Nature Publishing Group
    • الموضوع:
      2024
    • Collection:
      Université d'Orléans: HAL
    • نبذة مختصرة :
      International audience ; Neuroscience research has shown that specific brain patterns can relate to creativity during multiple tasks but also at rest. Nevertheless, the electrophysiological correlates of a highly creative brain remain largely unexplored. This study aims to uncover resting-state networks related to creative behavior using high-density electroencephalography (HD-EEG) and to test whether the strength of functional connectivity within these networks could predict individual creativity in novel subjects. We acquired resting state HD-EEG data from 90 healthy participants who completed a creative behavior inventory. We then employed connectome-based predictive modeling; a machine-learning technique that predicts behavioral measures from brain connectivity features. Using a support vector regression, our results reveal functional connectivity patterns related to high and low creativity, in the gamma frequency band (30-45 Hz). In leave-one-out cross-validation, the combined model of high and low networks predicts individual creativity with very good accuracy (r = 0.36, p = 0.00045). Furthermore, the model’s predictive power is established through external validation on an independent dataset (N = 41), showing a statistically significant correlation between observed and predicted creativity scores (r = 0.35, p = 0.02). These findings reveal large-scale networks that could predict creative behavior at rest, providing a crucial foundation for developing HD-EEG-network-based markers of creativity.
    • الرقم المعرف:
      10.1038/s42003-024-06461-6
    • الدخول الالكتروني :
      https://amu.hal.science/hal-04634487
      https://amu.hal.science/hal-04634487v1/document
      https://amu.hal.science/hal-04634487v1/file/s42003-024-06461-6-1.pdf
      https://doi.org/10.1038/s42003-024-06461-6
    • Rights:
      http://creativecommons.org/licenses/by/ ; info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.33A2DC98