Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Physics-guided interpretable probabilistic representation learning for high resolution image time series ; Approches guidées par la physique d'apprentissage de représentations interprétables et probabilistes à partir de séries temporelles d'images satellites.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Centre d'études spatiales de la biosphère (CESBIO); Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3); Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP); Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE); Centre National d'Études Spatiales Toulouse (CNES)
    • بيانات النشر:
      HAL CCSD
    • الموضوع:
      2022
    • Collection:
      Météo-France: HAL
    • نبذة مختصرة :
      International audience ; Learning representations that capture meaningful underlying information of data is a promising solution to reduce the reliance on labeled data for downstream applications. With the advent of the big remote sensing data era, self-supervised deep learning methods have become a valuable tool to extract high-level, complex abstractions and representations from large volumes of data. However, classical methodologies such as Variational Autoencoders are focused on imposing statistical constraints on the latent space and they do not learn generic and interpretable representations of the data. To address such limitation, this work presents a generic physics-guided representation learning methodology to discover semantic representations. To address it,the proposed approach constrains the learning process with the incorporation of prior physical knowledge. This study shows through an example how the methodology can be used to solve remote sensing inverse problems. Specifically, the inversion of a crop phenology model derived from NDVI time series is proposed. As a result, the probability distributions of the intrinsic physical model parameters are inferred. The feasibility of the method is evaluated on both simulated and real Sentinel-2 data and compared with different standard algorithms.
    • Relation:
      hal-03837736; https://hal.science/hal-03837736; https://hal.science/hal-03837736v2/document; https://hal.science/hal-03837736v2/file/preprint_HAL.pdf
    • الدخول الالكتروني :
      https://hal.science/hal-03837736
      https://hal.science/hal-03837736v2/document
      https://hal.science/hal-03837736v2/file/preprint_HAL.pdf
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.31F1C103