نبذة مختصرة : International audience ; AbstractKey messageForty years after clear-cutting mixed old-growth forest (broadleaf/Korean pine) in the Changbai Mountain area (Northeast China), a mixed forest with natural broadleaf regeneration and larch plantation displayed larger microbial biomass and activity in the soil than either a naturally regenerated birch forest or a monospecific spruce plantation.ContextClear-cutting with limited restoration effort was until the end of the twentieth century the norm for managing primary forests in Northeast China. Forest restoration plays an important role in the recovery of soil quality after clear-cutting, but the effects of different regeneration procedures on forest soil quality remain poorly known in Northeast China.AimsWe assessed the effects of three regeneration procedures, i.e., (i) naturally regenerated birch forest, (ii) spruce plantation, and (iii) naturally regenerated broadleaf species interspersed with planted larch on soil quality and microbial activity in the Changbai Mountain area. An old-growth mixed broadleaf/Korean pine forest was used as a reference.MethodsPhysical and chemical properties and microbial biomass were recorded in the soil. Basal respiration and carbon mineralization were measured with a closed-jar alkali-absorption method.ResultsMicrobial biomass was smaller in the birch forest and spruce plantation than in the old-growth and the mixed broadleaf/larch forests. Moreover, microbial biomass, microbial quotient, and potentially mineralizable carbon were larger in the mixed broadleaf/larch than in the birch forest, while no difference was found between spruce plantation and birch forest for microbial biomass and microbial quotient. Basal respiration and metabolic quotient were larger in the birch forest as compared to the three other forest types, indicating a larger energy need for maintenance of the microbial community and lower microbial activity in the naturally regenerated birch forest.ConclusionMixed broadleaf/larch forest displayed a larger microbial ...
No Comments.