Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Extreme heatwave sampling and prediction with analog Markov chain and comparisons with deep learning

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE); Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)); Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA); Département de Physique ENS Lyon; École normale supérieure de Lyon (ENS de Lyon)-Université de Lyon; Catholic University of Leuven = Katholieke Universiteit Leuven (KU Leuven); Università degli Studi di Roma "La Sapienza" = Sapienza University Rome (UNIROMA); Institute for Complex Systems Rome (CNR - ISC); National Research Council of Italy; Extrèmes : Statistiques, Impacts et Régionalisation (ESTIMR); Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)); Centre National de la Recherche Scientifique (CNRS); Département des Géosciences - ENS Paris; École normale supérieure - Paris (ENS-PSL); Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL); Laboratoire de Météorologie Dynamique (UMR 8539) (LMD); Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X); Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-École normale supérieure - Paris (ENS-PSL); Institut Pierre-Simon-Laplace (IPSL (FR_636)); Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X); Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité); Université Paris Sciences et Lettres (PSL); ANR-20-CE01-0008,SAMPRACE,Simuler des Evenements Climatiques Rares(2020); ANR-16-IDEX-0005,IDEXLYON,IDEXLYON(2016); European Project: 101003469,XAIDA
    • بيانات النشر:
      HAL CCSD
      Cambridge University Press
    • الموضوع:
      2024
    • Collection:
      École des Ponts ParisTech: HAL
    • نبذة مختصرة :
      International audience ; We present a data-driven emulator, a stochastic weather generator (SWG), suitable for estimating probabilities of prolonged heatwaves in France and Scandinavia. This emulator is based on the method of analogs of circulation to which we add temperature and soil moisture as predictor fields. We train the emulator on an intermediate complexity climate model run and show that it is capable of predicting conditional probabilities (forecasting) of heatwaves out of sample. Special attention is payed that this prediction is evaluated using a proper score appropriate for rare events. To accelerate the computation of analogs dimensionality reduction techniques are applied and the performance is evaluated. The probabilistic prediction achieved with SWG is compared with the one achieved with a Convolutional Neural Network (CNN). With the availability of hundreds of years of training data CNNs perform better at the task of probabilistic prediction. In addition, we show that the SWG emulator trained on 80 years of data is capable of estimating extreme return times of order of thousands of years for heatwaves longer than several days more precisely than the fit based on generalised extreme value distribution. Finally, the quality of its synthetic extreme teleconnection patterns obtained with SWG is studied. We showcase two examples of such synthetic teleconnection patterns for heatwaves in France and Scandinavia that compare favorably to the very long climate model control run.
    • Relation:
      info:eu-repo/grantAgreement//101003469/EU/eXtreme events : Artificial Intelligence for Detection and Attribution/XAIDA
    • الرقم المعرف:
      10.1017/eds.2024.7
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.31398807