Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

AUTOMATICWEB VIDEO CATEGORIZATION USING AUDIO-VISUAL INFORMATION AND HIERARCHICAL CLUSTERING RELEVANCE FEEDBACK

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Laboratorul de Analiza si Prelucrarea Imaginilor Bucarest (LAPI); Polytechnic University of Bucharest = Université Politehnica de Bucarest = Universitatea POLITEHNICA din București (UPB); Department of Computational Perception; University of Linz - Johannes Kepler Universität Linz (JKU); Laboratoire d'Informatique, Systèmes, Traitement de l'Information et de la Connaissance (LISTIC); Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )
    • بيانات النشر:
      CCSD
    • الموضوع:
      2012
    • Collection:
      Université Savoie Mont Blanc: HAL
    • نبذة مختصرة :
      International audience ; In this paper, we discuss and audio-visual approach to automatic web video categorization. We propose content descriptors which exploit audio, temporal, and color content. The power of our descriptors was validated both in the context of a classification system and as part of an information retrieval approach. For this purpose, we used a real-world scenario, comprising 26 video categories from the blip.tv media platform (up to 421 hours of video footage). Additionally, to bridge the descriptor semantic gap, we propose a new relevance feedback technique which is based on hierarchical clustering. Experiments demonstrated that retrieval performance can be increased significantly and becomes comparable to that of high level semantic textual descriptors.
    • الدخول الالكتروني :
      https://hal.science/hal-00732732
      https://hal.science/hal-00732732v1/document
      https://hal.science/hal-00732732v1/file/Ionescu_etal_Eusipco_2012.pdf
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.31031620