Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Spatio-Temporal Variability of Aerosol Components, Their Optical and Microphysical Properties over North China during Winter Haze in 2012, as Derived from POLDER/PARASOL Satellite Observations

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Aerospace Information Research Institute (AIRICAS); Chinese Academy of Sciences Beijing (CAS); Chinese Academy of Meteorological Sciences (CAMS); Laboratoire d’Optique Atmosphérique - UMR 8518 (LOA); Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS); ANR-11-LABX-0005,Cappa,Physiques et Chimie de l'Environnement Atmosphérique(2011)
    • بيانات النشر:
      HAL CCSD
      MDPI
    • الموضوع:
      2021
    • Collection:
      LillOA (HAL Lille Open Archive, Université de Lille)
    • نبذة مختصرة :
      International audience ; Pollution haze is a frequent phenomenon in the North China Plain (NCP) appearing during winter when the aerosol is affected by various pollutant sources and has complex distribution of the aerosol properties, while different aerosol components may have various critical effects on air quality, human health and radiative balance. Therefore, large-scale and accurate aerosol components characterization is urgently and highly desirable but hardly achievable at the regional scale. In this respect, directional and polarimetric remote sensing observations have great potential for providing information about the aerosol components. In this study, a state-of-the-art GRASP/Component approach was employed for attempting to characterize aerosol components in the NCP using POLDER/PARASOL satellite observations. The analysis was done for January 2012 in Beijing (BJ) and Shanxi (SX). The results indicate a peak of the BC mass concentration in an atmospheric column of 82.8 mg/m2 in the SX region, with a mean of 29.2 mg/m2 that is about four times higher than one in BJ (8.9 mg/m2). The mean BrC mass concentrations are, however, higher in BJ (up to ca. 271 mg/m2) than that in SX, which can be attributed to a higher anthropogenic emission. The mean amount of fine ammonium sulfate-like particles observed in the BJ region was three times lower than in SX (131 mg/m2). The study also analyzes meteorological and air quality data for characterizing the pollution event in BJ. During the haze episode, the results suggest a rapid increase in the fine mode aerosol volume concentration associated with a decrease of a scale height of aerosol down to 1500 m. As expected, the values of aerosol optical depth (AOD), absorbing aerosol optical depth (AAOD) and fine mode aerosol optical depth (AODf) are much higher on hazy days. The mass fraction of ammonium sulfate-like aerosol increases from about 13% to 29% and mass concentration increases from 300 mg/m2 to 500 mg/m2. The daily mean PM2.5 concentration and RH independently ...
    • Relation:
      hal-03320474; https://hal.science/hal-03320474; https://hal.science/hal-03320474/document; https://hal.science/hal-03320474/file/Ou_et_al_2021.pdf
    • الرقم المعرف:
      10.3390/rs13142682
    • الدخول الالكتروني :
      https://doi.org/10.3390/rs13142682
      https://hal.science/hal-03320474
      https://hal.science/hal-03320474/document
      https://hal.science/hal-03320474/file/Ou_et_al_2021.pdf
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.30FDFF12