Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Stable, Conductive, Adhesive Polymer Patterning Inside a Microfluidic Chamber for Endothelial Cell Alignment

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      Wiley
    • الموضوع:
      2024
    • Collection:
      White Rose Research Online (Universities of Leeds, Sheffield & York)
    • نبذة مختصرة :
      Endothelial cells (ECs) line the inner walls of blood vessels, respond to shear stress by elongating in the direction of flow. Engineering aligned ECs in vitro is essential for modeling human vascular diseases and for drug testing. Current microfluidic approaches mainly rely on unidirectional laminar flow, uniform coating of surfaces to improve cellular adhesion or alteration of the surface topography. Challenges persist due to shear stress-induced changes in cellular behavior, especially in complex multicellular environments and the time needed for the cells to align and polarize inside the microfluidic conduits. Generally, protein coating processes and physical treatments are also not compatible with the steps required for the assembly of microfluidic devices. This approach employs aerosol jet printing (AJP) to precisely pattern poly(3,4-ethylenedioxythiophene) polystyrene sulphonate (PEDOT:PSS) within microfluidic chambers in a single step. It is shown that the PEDOT:PSS is biocompatible and facilitates EC adhesion, patterning, elongation, and alignment. Under capillary flow, the cells retain their pattern-induced morphology over 7 d, confirming the efficacy of the approach in promoting cellular organization, eliminating the need for external pumps. Furthermore, it is demonstrated that the PEDOT:PSS pattern retains structural integrity and electrical stability following oxygen plasma treatment, required for assembling of fully enclosed microfluidic devices.
    • File Description:
      text
    • Relation:
      https://eprints.whiterose.ac.uk/213676/1/Adv%20Materials%20Technologies%20-%202024%20-%20Mancinelli%20-%20Stable%20%20Conductive%20%20Adhesive%20Polymer%20Patterning%20Inside%20a%20Microfluidic.pdf; Mancinelli, E. orcid.org/0000-0002-0530-1924 , Taccola, S. orcid.org/0000-0001-6959-5813 , Slay, E. orcid.org/0000-0003-0744-4299 et al. (6 more authors) (2024) Stable, Conductive, Adhesive Polymer Patterning Inside a Microfluidic Chamber for Endothelial Cell Alignment. Advanced Materials Technologies. ISSN 2365-709X
    • الدخول الالكتروني :
      https://eprints.whiterose.ac.uk/213676/
      https://eprints.whiterose.ac.uk/213676/1/Adv%20Materials%20Technologies%20-%202024%20-%20Mancinelli%20-%20Stable%20%20Conductive%20%20Adhesive%20Polymer%20Patterning%20Inside%20a%20Microfluidic.pdf
    • Rights:
      cc_by_4
    • الرقم المعرف:
      edsbas.2F8C295C