Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Deep Hybrid Learning Prediction of Patient-Specific Quality Assurance in Radiotherapy: Implementation in Clinical Routine

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Physique médicale (radiophysique) Centre François Baclesse; Centre Régional de Lutte contre le Cancer François Baclesse Caen (UNICANCER/CRLC); Normandie Université (NU)-UNICANCER-Tumorothèque de Caen Basse-Normandie (TCBN)-Normandie Université (NU)-UNICANCER-Tumorothèque de Caen Basse-Normandie (TCBN); GenesisCare; Site Louis Pasteur CHPC; CH Centre Hospitalier Public du Cotentin (CHPC); GIP Cyceron (Cyceron); Université de Caen Normandie (UNICAEN); Normandie Université (NU)-Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-CHU Caen; Normandie Université (NU)-Tumorothèque de Caen Basse-Normandie (TCBN)-Tumorothèque de Caen Basse-Normandie (TCBN)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS); Imagerie et Stratégies Thérapeutiques pour les Cancers et Tissus cérébraux (ISTCT); Normandie Université (NU)-Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)
    • بيانات النشر:
      HAL CCSD
      MDPI
    • الموضوع:
      2023
    • Collection:
      Normandie Université: HAL
    • نبذة مختصرة :
      CERVOXY ; International audience ; Background: Arc therapy allows for better dose deposition conformation, but the radiotherapy plans (RT plans) are more complex, requiring patient-specific pre-treatment quality assurance (QA). In turn, pre-treatment QA adds to the workload. The objective of this study was to develop a predictive model of Delta4-QA results based on RT-plan complexity indices to reduce QA workload. Methods. Six complexity indices were extracted from 1632 RT VMAT plans. A machine learning (ML) model was developed for classification purpose (two classes: compliance with the QA plan or not). For more complex locations (breast, pelvis and head and neck), innovative deep hybrid learning (DHL) was trained to achieve better performance. Results. For not complex RT plans (with brain and thorax tumor locations), the ML model achieved 100% specificity and 98.9% sensitivity. However, for more complex RT plans, specificity falls to 87%. For these complex RT plans, an innovative QA classification method using DHL was developed and achieved a sensitivity of 100% and a specificity of 97.72%. Conclusions. The ML and DHL models predicted QA results with a high degree of accuracy. Our predictive QA online platform is offering substantial time savings in terms of accelerator occupancy and working time.
    • Relation:
      hal-04010914; https://normandie-univ.hal.science/hal-04010914; https://normandie-univ.hal.science/hal-04010914/document; https://normandie-univ.hal.science/hal-04010914/file/diagnostics-13-00943.pdf
    • الرقم المعرف:
      10.3390/diagnostics13050943
    • الدخول الالكتروني :
      https://normandie-univ.hal.science/hal-04010914
      https://normandie-univ.hal.science/hal-04010914/document
      https://normandie-univ.hal.science/hal-04010914/file/diagnostics-13-00943.pdf
      https://doi.org/10.3390/diagnostics13050943
    • Rights:
      http://creativecommons.org/licenses/by/ ; info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.2F641ED1