نبذة مختصرة : International audience ; We present the first large sample of scintillation arcs in millisecond pulsars, analysing 12 sources observed with the Large European Array for Pulsars (LEAP), and the Effelsberg 100 m telescope. We estimate the delays from multipath propagation, measuring significant correlated changes in scattering timescales over a 10-year timespan. Many sources show compact concentrations of power in the secondary spectrum, which in PSRs J0613$-$0200 and J1600$-$3053 can be tracked between observations, and are consistent with compact scattering at fixed angular positions. Other sources such as PSRs J1643$-$1224 and J0621+1002 show diffuse, asymmetric arcs which are likely related to phase-gradients across the scattering screen. PSR B1937+21 shows at least three distinct screens which dominate at different times and evidence of varying screen axes or multi-screen interactions. We model annual and orbital arc curvature variations in PSR J0613$-$0200, providing a measurement of the longitude of ascending node, resolving the sense of the orbital inclination, where our best fit model is of a screen with variable axis of anisotropy over time, corresponding to changes in the scattering of the source. Unmodeled variations of the screen's axis of anisotropy are likely to be a limiting factor in determining orbital parameters with scintillation, requiring careful consideration of variable screen properties, or independent VLBI measurements. Long-term scintillation studies such as this serve as a complementary tool to pulsar timing, to measure a source of correlated noise for pulsar timing arrays, solve pulsar orbits, and to understand the astrophysical origin of scattering screens.
No Comments.