Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

OVIS: ontology video surveillance indexing and retrieval system

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Université d'Oran 1 Ahmed Ben Bella Oran; FOX MIIRE (LIFL); Laboratoire d'Informatique Fondamentale de Lille (LIFL); Université de Lille, Sciences et Technologies-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lille, Sciences Humaines et Sociales-Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Sciences et Technologies-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lille, Sciences Humaines et Sociales-Centre National de la Recherche Scientifique (CNRS); Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL); Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
    • بيانات النشر:
      HAL CCSD
      Springer
    • الموضوع:
      2017
    • Collection:
      Université de Lille 3 - Sciences Humaines et Sociales: HAL
    • نبذة مختصرة :
      International audience ; Nowadays, the diversity and large deployment of video recorders results in a large volume of video data, whose effective use requires a video indexing process. However, this process generates a major problem consisting in the semantic gap between the extracted low-level features and the ground-truth. The ontology paradigm provides a promising solution to overcome this problem. However, no naming syntax convention has been followed in the concept creation step, which constitutes another problem. In this paper, we have considered these two issues and have developed a full video surveillance ontology following a formal naming syntax convention and semantics that addresses queries of both academic research and industrial applications. In addition, we propose an Ontology Video-surveillance Indexing and retrieval System (OVIS) using a set of Semantic Web Rule Language (SWRL) rules that bridges the semantic gap problem. Currently, the existing indexing systems are essentially based on low-level features and the ontology paradigm is used only to support this process with representing surveillance domain. In this paper, we developed the OVIS system based on the SWRL rules and the experiments prove that our approach leads to promising results on the top video evaluation benchmarks and also shows new directions for future developments.
    • Relation:
      hal-01590265; https://hal.science/hal-01590265; https://hal.science/hal-01590265/document; https://hal.science/hal-01590265/file/ontology%20video%20surveillance%20indexing%20and%20retrieval%20system.pdf
    • الرقم المعرف:
      10.1007/s13735-017-0133-z
    • الدخول الالكتروني :
      https://hal.science/hal-01590265
      https://hal.science/hal-01590265/document
      https://hal.science/hal-01590265/file/ontology%20video%20surveillance%20indexing%20and%20retrieval%20system.pdf
      https://doi.org/10.1007/s13735-017-0133-z
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.2DCC935F