Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Improving text recognition using optical and language model writer adaptation

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Equipe Apprentissage (DocApp - LITIS); Laboratoire d'Informatique, de Traitement de l'Information et des Systèmes (LITIS); Université Le Havre Normandie (ULH); Normandie Université (NU)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN); Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie); Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Université Le Havre Normandie (ULH); Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)
    • بيانات النشر:
      HAL CCSD
    • الموضوع:
      2019
    • Collection:
      Normandie Université: HAL
    • الموضوع:
    • نبذة مختصرة :
      International audience ; State-of-the-art methods for handwriting text recognition are based on deep learning approaches and language modeling that require large data sets during training. In practice, there are some applications where the system processes mono-writer documents, and would thus benefit from being trained on examples from that writer. However, this is not common to have numerous examples coming from just one writer. In this paper, we propose an approach to adapt both the optical model and the language model to a particular writer, from a generic system trained on large data sets with a variety of examples. We show the benefits of the optical and language model writer adaptation. Our approach reaches competitive results on the READ 2018 data set, which is dedicated to model adaptation to particular writers.
    • Relation:
      hal-02141120; https://hal.science/hal-02141120; https://hal.science/hal-02141120/document; https://hal.science/hal-02141120/file/WriterAdaptation_icdar19.pdf
    • الدخول الالكتروني :
      https://hal.science/hal-02141120
      https://hal.science/hal-02141120/document
      https://hal.science/hal-02141120/file/WriterAdaptation_icdar19.pdf
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.2C7CD734