Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

On off-critical zeros of lattice energies in the neighborhood of the Riemann zeta function

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Institut Camille Jordan (ICJ); École Centrale de Lyon (ECL); Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL); Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon); Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS); Équations aux dérivées partielles, analyse (EDPA); Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL); Institute of Physics, Slovak Academy of Sciences; Slovak Academy of Science Bratislava (SAS)
    • بيانات النشر:
      HAL CCSD
    • الموضوع:
      2024
    • Collection:
      HAL Lyon 1 (University Claude Bernard Lyon 1)
    • نبذة مختصرة :
      19 pages, 4 figures ; The Riemann zeta function $\zeta(s):= \sum_{n=1}^{\infty} 1/n^s$ can be interpreted as the energy per point of the lattice $\mathbb{Z}$, interacting pairwisely via the Riesz potential $1/r^s$. Given a parameter $\Delta\in (0,1]$, this physical model is generalized by considering the energy per point $E(s,\Delta)$ of a periodic one-dimensional lattice alternating the distances between the nearest-neighbour particles as $2/(1+\Delta)$ and $2\Delta/(1+\Delta)$, keeping the lattice density equal to one independently of $\Delta$. This energy trivially satisfies $E(s,1)=\zeta(s)$ at $\Delta=1$, it can be easily expressed as a combination of the Riemann and Hurwitz zeta functions, and extended analytically to the punctured $s$-plane $\mathbb{C} \setminus \{ 1\}$. In this paper, we perform numerical investigations of the zeros of the energy $\{ \rho=\rho_x+{\rm i}\rho_y\}$, which are defined by $E(\rho,\Delta)=0$. The numerical results reveal that in the Riemann limit $\Delta\to 1^-$ theses zeros include the anticipated critical zeros of the Riemann zeta function with $\Re(\rho_x)=\frac{1}{2}$ as well as an unexpected -- comparing to the Riemann Hypothesis -- infinite series of off-critical zeros. The analytic treatment of these off-critical zeros shows that their imaginary components are equidistant and their real components diverge logarithmically to $-\infty$ as $\Delta\to 1^-$, i.e., they become invisible at the Riemann's $\Delta=1$.
    • Relation:
      info:eu-repo/semantics/altIdentifier/arxiv/2307.06002; hal-04454257; https://hal.science/hal-04454257; https://hal.science/hal-04454257/document; https://hal.science/hal-04454257/file/2307.06002.pdf; ARXIV: 2307.06002
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.2B941F0F