Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

The Chemistry of Dimethacrylate-Styrene Networks and Development of Flame Retardant, Halogen-Free Fiber Reinforced Vinyl Ester Composites

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Chemistry; Riffle, Judy S.; Long, Timothy E.; Shultz, Allan R.; Davis, Richey M.; McGrath, James E.
    • بيانات النشر:
      Virginia Tech
    • الموضوع:
      2004
    • Collection:
      VTechWorks (VirginiaTech)
    • نبذة مختصرة :
      One of the major classes of polymer matrix resins under consideration for structural composite applications in the infrastructure and construction industries is vinyl ester resin. Vinyl ester resin is comprised of low molecular weight poly(hydroxyether) oligomers with methacrylate endgroups diluted with styrene monomer. The methacrylate endgroups cure with styrene via free radical copolymerization to yield thermoset networks. The copolymerization behavior of these networks was monitored by Fourier Transform Infrared Spectroscopy (FTIR) at various cure conditions. Reactions of the carbon-carbon double bonds of the methacrylate (943 cm-1) and styrene (910 cm-1) were followed independently. Oligomers possessing number average molecular weights of 700 g/mole were studied with systematically increasing levels of styrene. The Mortimer-Tidwell reactivity ratios indicated that at low conversion more styrene was incorporated into the network at lower cure temperatures. The experimental vinyl ester-styrene network compositions deviated significantly from those predicted by the Meyer-Lowry integrated copolymer equation at higher conversion, implying that the reactivity ratios for these networks may change with conversion. The kinetic data were used to provide additional insight into the physical and mechanical properties of these materials. In addition to establishing the copolymerization kinetics of these materials, the development of halogen free fiber reinforced vinyl ester composites exhibiting good flame properties was of interest. Flame retardant vinyl ester resins are used by many industries for applications requiring good thermal resistance. The current flame-retardant technology is dependent on brominated vinyl esters, which generate high levels of smoke and carbon monoxide. A series of halogen free binder systems has been developed and dispersed in the vinyl ester to improve flame retardance. The binder approach enables the vinyl ester resin to maintain its low temperature viscosity so that fabrication of ...
    • File Description:
      ETD; application/pdf
    • Relation:
      Rosario_Dissertation.pdf; etd-11132002-175555; http://hdl.handle.net/10919/11228; http://scholar.lib.vt.edu/theses/available/etd-11132002-175555
    • الدخول الالكتروني :
      http://hdl.handle.net/10919/11228
      http://scholar.lib.vt.edu/theses/available/etd-11132002-175555
    • Rights:
      In Copyright ; http://rightsstatements.org/vocab/InC/1.0/
    • الرقم المعرف:
      edsbas.2B37897F