Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Can we Defend Against the Unknown? An Empirical Study About Threshold Selection for Neural Network Monitoring

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Institut National des Sciences Appliquées - Toulouse (INSA Toulouse); Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT); Équipe Tolérance aux fautes et Sûreté de Fonctionnement informatique (LAAS-TSF); Laboratoire d'analyse et d'architecture des systèmes (LAAS); Université Toulouse Capitole (UT Capitole); Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse); Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse - Jean Jaurès (UT2J); Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3); Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP); Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole); Université de Toulouse (UT); DTIS, ONERA, Université de Toulouse Toulouse; ONERA-PRES Université de Toulouse; Université Toulouse III - Paul Sabatier (UT3); UMR 228 Espace-Dev, Espace pour le développement; Institut de Recherche pour le Développement (IRD)-Université de Perpignan Via Domitia (UPVD)-Avignon Université (AU)-Université de La Réunion (UR)-Université de la Nouvelle-Calédonie (UNC)-Université de Guyane (UG)-Université des Antilles (UA)-Université de Montpellier (UM); Institut de Recherche pour le Développement (IRD); PMLR; ANR-19-P3IA-0004,ANITI,Artificial and Natural Intelligence Toulouse Institute(2019)
    • بيانات النشر:
      CCSD
    • الموضوع:
      2024
    • Collection:
      Université de Montpellier: HAL
    • الموضوع:
    • الموضوع:
      Barcelona, Spain
    • نبذة مختصرة :
      International audience ; With the increasing use of neural networks in critical systems, runtime monitoring becomes essential to reject unsafe predictions during inference. Various techniques have emerged to establish rejection scores that maximize the separability between the distributions of safe and unsafe predictions. The efficacy of these approaches is mostly evaluated using threshold-agnostic metrics, such as the area under the receiver operating characteristic curve. However, in real-world applications, an effective monitor also requires identifying a good threshold to transform these scores into meaningful binary decisions. Despite the pivotal importance of threshold optimization, this problem has received little attention. A few studies touch upon this question, but they typically assume that the runtime data distribution mirrors the training distribution, which is a strong assumption as monitors are supposed to safeguard a system against potentially unforeseen threats. In this work, we present rigorous experiments on various image datasets to investigate: 1. The effectiveness of monitors in handling unforeseen threats, which are not available during threshold adjustments. 2. Whether integrating generic threats into the threshold optimization scheme can enhance the robustness of monitors.
    • Relation:
      info:eu-repo/semantics/altIdentifier/arxiv/2405.08654; ARXIV: 2405.08654
    • الدخول الالكتروني :
      https://hal.science/hal-04579393
      https://hal.science/hal-04579393v1/document
      https://hal.science/hal-04579393v1/file/UAI2024.pdf
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.2A60E79A