Relation: Astudillo, P., Isabel, C., Barrero, R., Carlos, A., Puello, B., Luis, M. (2015), Diagnostic of the main agricultural residues produced in the bolivar region. Sciences Agroalimentary, 2, 39-50.; Avcıoğlu, A.O., Dayıoğlu, M.A., Türker, U. (2019), Assessment of the energy potential of agricultural biomass residues in Turkey. Renewable Energy, 138, 610-619.; Bhatnagar, A., Vilar, V.J.P., Botelho, C.M.S., Boaventura, R.A.R. (2010), Coconut-based biosorbents for water treatment a review of the recent literature. Advances in Colloid and Interface Science, 160(1-2), 1-15.; Boundy, B., Diegel, S.W., Wright, L., Davis, S.C. (2011), Biomas Energy Data Book. 4th ed. Tenesse: US Department of Energy; Cabello, J.J., Balbis, M., Sagastume, A., Pardo, A., Cabello, M., Rey, F.J., Rueda-Bayona, J.G.J.G., Eras, J.J.C., Morejón, M.B., Gutiérrez, A.S., García, A.P., Ulloa, M.C., Martínez, F.J.R., Rueda-Bayona, J.G.J. (2019), A look to the electricity generation from non-conventional renewable energy sources in Colombia. International Journal of Energy Economics and Policy, 9, 15-25.; Carranza, J.Q., Gutiérrez, C.C. (2012), El fogón abierto de tres piedras en la península de Yucatán: Tradición y transferencia tecnológica. Revista Pueblos y Fronteras Digital, 7, 270-301.; Chen, W.H., Kuo, P.C. (2010), A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry. Energy 35, 2580-2586.; Consorcio Estrategia Rural Sostenible. (2019), Plan de Sustitución Progresiva de Leña. Bogotá, Colombia: Consorcio Estrategia Rural Sostenible; DANE. (2018), Resultados del Censo Nacional de Población y Vivienda; 2018. Available from: https://www.dane.gov.co/index.php/ estadisticas-por-tema/demografia-y-poblacion/censo-nacional-depoblacion-y-vivenda-2018. [Last accessed on 2020 Nov 09].; Dong, J., Tang, Y., Nzihou, A., Chi, Y., Weiss-Hortala, E., Ni, M. (2018), Life cycle assessment of pyrolysis, gasification and incineration waste-to-energy technologies: Theoretical analysis and case study of commercial plants. Science of the Total Environment, 626, 744-753.; Fondo Emprender. (2018), Informe Final de Evaluación Convocatori Nacional No. 62. Available from: http://www.fondoemprender.com/ docsconvocatoriasnacionales/informefinaldeevaluacionconv621c.xlsx.; Garfí, M., Castro, L., Montero, N., Escalante, H., Ferrer, I. (2019), Bioresource technology evaluating environmental benefits of lowcost biogas digesters in small-scale farms in Colombia: A life cycle assessment. Bioresource Technology, 274, 541-548.; Gómez-Navarro, T., Ribó-Pérez, D. (2018), Assessing the obstacles to the participation of renewable energy sources in the electricity market of Colombia. Renewable and Sustainable Energy Reviews, 90, 131-141.; Ibeto, C., Anisha, M., Anyanwu, C. (2016), Evaluation of the fuel properties and pollution potentials of lignite coal and pellets of its blends with different biowastes. American Chemical Science Journal, 14, 1-12.; International Energy Agency. (2020), Energy Technology Perspectives 2020. Paris, France: International Energy Agency; International Finance Corporation. (2017), Converting Biomass to Energy: A Guide for Developers and Investors. Washington, DC: International Finance Corpotation; Jekayinfa, S.O., Omisakin, O.S. (2005), The energy potentials of some agricultural wastes as local fuel materials in Nigeria. Agricultural Engineering International: CIGR Journal, 7, 1-10.; Kurchania, A.K., Panwar, N.L., Pagar, S.D. (2010), Design and performance evaluation of biogas stove for community cooking application. International Journal of Sustainable Energy, 29, 116-123.; Leal, M.R.L., Galdos, M.V., Scarpare, F.V., Seabra, J.E.A., Walter, A., Oliveira, C.O.F. (2013), Sugarcane straw availability, quality, recovery and energy use: A literature review. Biomass and Bioenergy, 53, 11-19.; Ltodo, I.N., Agyo, G.E., Yusuf, P. (2007), Performance evaluation of a biogas stove for cooking in Nigeria. Journal of Energy in Southern Africa, 18, 14-18.; Mayer, F., Bhandari, R., Gäth, S. (2019), Critical review on life cycle assessment of conventional and innovative waste-to-energy technologies. Science of the Total Environment, 672, 708-721.; Ministerio de Agricultura y Desarrollo Rural. (2016), Anuario Estadístico del Sector Agropecuario 2014. Bogotá, Colombia: Ministerio de Agricultura y Desarrollo Rural.; Ministerio de Agricultura y Desarrollo Rural. (2017), Anuario Esatdístico del Sector Agropecuario 2016. Bogotá, Colombia: Ministerio de Agricultura y Desarrollo Rural; Ministerio de Agricultura y Desarrollo Rural. (2018a), Boletín Estadístico Trimestre II de 2018 Abril a Junio. Bogota, Colombia: Ministerio de Agricultura y Desarrollo Rural; Ministerio de Agricultura y Desarrollo Rural. (2018b), Boletín Estadístico Trimestre I de 2018. Bogota, Colombia: Ministerio de Agricultura y Desarrollo Rural.; Pérez, J.F., Pelaez-Samaniego, M.R., Garcia-Perez, M. (2019), Torrefaction of fast-growing Colombian wood species. Waste and Biomass Valorization, 10, 1655-1667.; Pöschl, M., Ward, S., Owende, P. (2010), Evaluation of energy efficiency of various biogas production and utilization pathways. Applied Energy, 87, 3305-3321.; Ramírez, R., Arce, J.C., Jeréz, C., Puertas, Y., Gómez, L., Riaño, J., Diaz, O. (2018), Boletín Estadístico de Minas y Energía 2016-2018. Boletin Estadístico de Minas y Energía.; Robles, C., Polo, A., Ospino, A. (2017), An analytic hierarchy process based approach for evaluating renewable energy sources. International Journal of Energy Economics and Policy, 7, 38-47.; Sagastume, A., Cabello Eras, J.J., Hens, L., Vandecasteele, C. (2020), The energy potential of agriculture, agroindustrial, livestock, and slaughterhouse biomass wastes through direct combustion and anaerobic digestion. The case of Colombia. Journal of Cleaner Production, 2020, 122317.; Sanchez, C.P., Galvis, J.P. (2016), Implementación y Evaluación de Cocinas Ecológicas en la Vereda Quebrada del Medio, Corregimiento de Pueblo Bujo, Zona Rural Del Municipio de Montería. Cordoba: Universidad de Cordoba.; Sarki, J., Hassan, S.B., Aigbodion, V.S., Oghenevweta, J.E. (2011), Potential of using coconut shell particle fillers in eco-composite materials. Journal of Alloys and Compounds, 509, 2381-2385; Shah, S.A.Y., Zeeshan, M., Farooq, M.Z., Ahmed, N., Iqbal, N. (2019), Co-pyrolysis of cotton stalk and waste tire with a focus on liquid yield quantity and quality. Renewable Energy, 130, 238-244; Shen, G., Hays, M.D., Smith, K.R., Williams, C., Faircloth, J.W., Jetter,J.J. (2018), Evaluating the performance of household liquefied petroleum gas cookstoves. Environmental Science and Technology, 52, 904-915.; Thomsen, S.T., Spliid, H., Østergård, H. (2014), Statistical prediction of biomethane potentials based on the composition of lignocellulosic biomass. Bioresource Technology, 154, 80-86.; Ullah, K., Sharma, V.K., Dhingra, S., Braccio, G., Ahmad, M., Sofia, S. (2015), Assessing the lignocellulosic biomass resources potential in developing countries: A critical review. Renewable and Sustainable Energy Reviews, 51, 682-698.; UNDP. (2019), Córdoba. Retos y Desafíos para el Desarrollo Sostenible. New York: UNDP.; Wang, Q., Sarkar, J. (2018), Pyrolysis behaviors of waste coconut shell and husk biomasses. The International Journal of Energy Production and Management, 3, 34-43.; Wang, S., Jena, U., Das, K.C. (2018), Biomethane production potential of slaughterhouse waste in the United States. Energy Conversion and Management, 173, 143-157; https://hdl.handle.net/11323/8343; https://doi.org/10.32479/ijeep.10705; Corporación Universidad de la Costa; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.co/
No Comments.