نبذة مختصرة : International audience ; New applications of Electroencephalographic recording (EEG) pose new challenges in terms of artifact removal. In our work, we target informed source separation methods for artifact removal in single-channel EEG recordings by exploiting prior knowledge from auxiliary lightweight sensors capturing artifactual signals. To achieve this, we first propose a method using Non-negative Matrix Factorization (NMF) in a Gaussian source separation that proves competitive against the classic multi-channel Independent Component Analysis (ICA) technique. Additionally, we confront a probabilistic Non-negative Tensor Factorization (NTF) with ICA, both used in an original scheme that jointly processes the EEG and auxiliary signals. The adopted NTF strategy is shown to improve separation accuracy in comparison with the usual multi-channel ICA approach and the single EEG channel NMF method.
No Comments.