Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Inferring linguistic transmission between generations at the scale of individuals

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Éco-Anthropologie (EA); Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité); Institut Jean-Nicod (IJN); Département d'Etudes Cognitives - ENS Paris (DEC); École normale supérieure - Paris (ENS-PSL); Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-École normale supérieure - Paris (ENS-PSL); Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-École des hautes études en sciences sociales (EHESS)-Collège de France (CdF (institution))-Centre National de la Recherche Scientifique (CNRS)-Département de Philosophie - ENS Paris; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL); ANR-12-BSV7-0012,demochips,Inférence de l'histoire démographique à partie des grands jeux de données de polymorphisme A.D.N.(2012)
    • بيانات النشر:
      HAL CCSD
      Oxford University Press
    • الموضوع:
      2022
    • Collection:
      Muséum National d'Histoire Naturelle (MNHM): HAL
    • نبذة مختصرة :
      International audience ; Abstract Historical linguistics strongly benefited from recent methodological advances inspired by phylogenetics. Nevertheless, no available method uses contemporaneous within-population linguistic diversity to reconstruct the history of human populations. Here, we developed an approach inspired from population genetics to perform historical linguistic inferences from linguistic data sampled at the individual scale, within a population. We built four within-population demographic models of linguistic transmission over generations, each differing by the number of teachers involved during the language acquisition and the relative roles of the teachers. We then compared the simulated data obtained with these models with real contemporaneous linguistic data sampled from Tajik speakers from Central Asia, an area known for its large within-population linguistic diversity, using approximate Bayesian computation methods. Under this statistical framework, we were able to select the models that best explained the data, and infer the best-fitting parameters under the selected models. The selected model assumes that the lexicon of individuals is the result of a vertical transmission by two teachers, with a specific lexicon for each teacher. This demonstrates the feasibility of using contemporaneous within-population linguistic diversity to infer historical features of human cultural evolution.
    • Relation:
      hal-04050627; https://cnrs.hal.science/hal-04050627; https://cnrs.hal.science/hal-04050627/document; https://cnrs.hal.science/hal-04050627/file/Thouzeau_Manuscript_2023.pdf
    • الرقم المعرف:
      10.1093/jole/lzac009
    • الدخول الالكتروني :
      https://cnrs.hal.science/hal-04050627
      https://cnrs.hal.science/hal-04050627/document
      https://cnrs.hal.science/hal-04050627/file/Thouzeau_Manuscript_2023.pdf
      https://doi.org/10.1093/jole/lzac009
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.25B327F3