Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Temporal proteome dynamics of Clostridium cellulovorans cultured with major plant cell wall polysaccharides

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      青木, 航; 黒田, 浩一; 植田, 充美; 10722184; 90183201
    • بيانات النشر:
      Springer Science and Business Media LLC
    • الموضوع:
      2019
    • Collection:
      Kyoto University Research Information Repository (KURENAI) / 京都大学学術情報リポジトリ
    • نبذة مختصرة :
      Background: Clostridium cellulovorans is a mesophilic, cellulosome-producing bacterium containing 57 genomic cellulosomal enzyme-encoding genes. In addition to cellulosomal proteins, C. cellulovorans also secretes non-cellulosomal proteins to degrade plant cell wall polysaccharides. Unlike other cellulosome-producing Clostridium species, C. cellulovorans can metabolize all major plant cell wall polysaccharides (cellulose, hemicelluloses, and pectins). In this study, we performed a temporal proteome analysis of C. cellulovorans to reveal strategies underlying plant cell wall polysaccharide degradation. Results: We cultured C. cellulovorans with five different carbon sources (glucose, cellulose, xylan, galactomannan, and pectin) and performed proteome analysis on cellular and secreted proteins. In total, we identified 1895 cellular proteins and 875 secreted proteins. The identified unique carbohydrate-degrading enzymes corresponding to each carbon source were annotated to have specific activity against each carbon source. However, we identified pectate lyase as a unique enzyme in C. cellulovorans cultivated on xylan, which was not previously associated with xylan degradation. We performed k-means clustering analysis for elucidation of temporal changes of the cellular and secreted proteins in each carbon sources. We found that cellular proteins in most of the k-means clusters are involved in carbohydrate metabolism, amino acid metabolism, translation, or membrane transport. When xylan and pectin were used as the carbon sources, the most increasing k-means cluster contained proteins involved in the metabolism of cofactors and vitamins. In case of secreted proteins of C. cellulovorans cultured either on cellulose or xylan, galactomannan, and pectin, the clusters with the most increasing trend contained either 25 cellulosomal proteins and five non-cellulosomal proteins or 8–19 cellulosomal proteins and 9–16 non-cellulosomal proteins, respectively. These differences might reflect mechanisms for degrading cellulose of ...
    • File Description:
      application/pdf
    • ISSN:
      1471-2180
    • Relation:
      http://hdl.handle.net/2433/250048; BMC microbiology; 19; 118
    • الدخول الالكتروني :
      http://hdl.handle.net/2433/250048
    • Rights:
      This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
    • الرقم المعرف:
      edsbas.245FEDF3