Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Cocoa olein glycerolysis with lipase Candida antarctica in a solvent free system ; Glicerólisis de oleínas de cacao con lipasa Candida antarctica en un sistema libre de solventes

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      Consejo Superior de Investigaciones Científicas
    • الموضوع:
      2020
    • Collection:
      Grasas y Aceites (E-Journal)
    • نبذة مختصرة :
      In this paper we present the valorization of cocoa olein obtained from the acid fat-splitting of soapstocks. The aim is to develop a solvent free process (enzymatically catalyzed) to maximize the production of a final product with high content of monoglycerides (MAG) and diglycerides (DAG). The effect of the enzyme dose, glycerol content, reaction times as well as the modification of the raw material and pressure were studied. The yield of the reaction increased up to 90-95% when using a vacuum of 2-3 mbar at 65 °C, enough to evaporate the water which is generated as a by-product, an enzyme dose of 1% and molar ratio oil:glycerol of 1:2. The highest yield in terms of MAG and DAG production was obtained by starting from a raw material which was rich in free acidity (FFA), rendering oil with 33.4 and 44.2% MAG and DAG, respectively. Short reaction times (6-8 h) were observed compared to previously reported results (24 h). ; En el presente trabajo se pretende valorizar la oleína vegetal de cacao procedente de la ruptura ácida de las pastas de refinación química. El objetivo es poner a punto un proceso de glicerólisis enzimática en un sistema libre de solventes maximizando la producción de monoglicéridos (MAG) y diglicéridos (DAG). Se ha estudiado el efecto de la dosis de enzima, el contenido de glicerol y el tiempo de reacción, la modificación de la presión de reacción y la composición de la materia prima. Se concluye que el rendimiento de la reacción aumenta hasta el 90-95% cuando se aplica un vacío de 2-3 mbar a 65 ºC suficiente para evaporar el agua que se va generando como producto, una dosis de enzima del 1% y una relación molar aceite:glicerol 1:2. El mayor rendimiento en cuanto a la producción de MAG y DAG se ha conseguido partiendo de una materia prima rica en acidez libre (FFA), obteniéndose un aceite con un 33.4 y 44.2% de MAG y DAG, respectivamente. Se observa que los tiempos de reacción son cortos (6-8h) comparados con los descritos en la bibliografía encontrada (24h).
    • File Description:
      text/html; application/pdf; application/xml
    • Relation:
      https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1853/2678; https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1853/2679; https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1853/2680; Abdelmoez W, Mustafa A. 2014. Oleochemical industry future through biotechnology. J. Oleo Sci. 63 (6), 545-554. https://doi.org/10.5650/jos.ess14022 PMid:24881769; Baeza-Jiménez R, Miranda K, García HS, Otero C. 2013. Lipase-catalyzed glycerolysis of fish oil to obtain diacylglycerols. Grasas Aceites 64 (3), 237-242. https://doi.org/10.3989/gya.084412; Baoping Z, Zhongwei C, Li W, Ren W, Zhengxing C, Lianhe Z. 2014. Production of glycerol monolaurate- enriched monoacylglycerols by lipase-catalyzed glycerolysis from coconut oil. Eur. J. Lipid Sci. Technol. 116, 328-335. https://doi.org/10.1002/ejlt.201300243; Borrelli GM, Trono D. 2015. Recombinant Lipases and Phospholipases and Their Use as Biocatalysts for Industrial Applications. Int. J. Mol. Sci. 16, 20774-20840. https://doi.org/10.3390/ijms160920774 PMid:26340621 PMCid:PMC4613230; Camino Feltes MM, De Oliveira D, Mara Block J, Luiz Ninow J. 2013. The Production, Benefits, and Applications of Monoacylglycerols and Diacylglycerols of Nutritional Interest. Food Bioprocess Technol. 6, 17-35. https://doi.org/10.1007/s11947-012-0836-3; Camino Feltes MM, Villeneuve P, Baréa B, Barouh N, Vladimir de Oliveira J, De Oliveira D, Luiz Ninow J. 2012. Enzymatic Production of Monoacylglycerols (MAG) and Diacylglycerols (DAG) from Fish Oil in a Solvent-Free System. J. Am. Oil Chem. Soc. 89, 1057-1065. https://doi.org/10.1007/s11746-011-1998-2; Choong TSY, Yeoh CM, Phuah ET, Siew WL, Lee YY, Tang TK. 2018. Kinetic study of lipase-catalyzed glycerolysis of palm olein using Lipozyme TLIM in solvent-free system. PLoS One 13 (2), e0192375. https://doi.org/10.1371/journal.pone.0192375 PMid:29401481 PMCid:PMC5798838; Csanádi Z, Bélafi-Bakó K, Gubicza L. 2009. Biocatalytic production of glycerol mono-stearate in non-conventional reaction media. New Biotechnology 25, Supplement Page S110. https://doi.org/10.1016/j.nbt.2009.06.388; Dias Ribeiro B, Machado de Castro A, Zarur Coelho MA, Guimaraes Freire DM. 2011. Production and Use of Lipases in Bioenergy: A Review from the Feedstocks to Biodiesel Production. Enzyme Res. 11, 1-16. https://doi.org/10.4061/2011/615803 PMid:21785707 PMCid:PMC3137985; Elfman-Börjesson I, Härröd M. 1999. Synthesis of Monoglycerides by Glycerolysis of Rapeseed Oil Using Immobilized Lipase. J. Am. Oil Chem. Soc. 76 (6), 701-707. https://doi.org/10.1007/s11746-999-0162-8; Fariha H, Aamer AS, Abdul H. 2006. Industrial applications of microbial lipases. Enzyme Microb. Technol. 39, 235-251. https://doi.org/10.1016/j.enzmictec.2005.10.016; Fregolente PBL, Vasconcelos Fregolente L, Maria Pinto G, César Batistella B, Wolf-Maciel MG, Maciel Filho R. 2008. Monoglycerides and Diglycerides Synthesis in a Solvent-Free System by Lipase-Catalyzed Glycerolysis. Appl. Biochem. Biotechnol. 146 (1-3), 165-172. https://doi.org/10.1007/s12010-008-8133-3 PMid:18421596; Fregolente PBL, Pinto GMF, Wolf-Maciel MR, Filho RM. 2010. Monoglyceride and diglyceride production through lipase-catalyzed glycerolysis and molecular distillation. Appl. Biochem. Biotechnol. 160 (7), 1879-1887. https://doi.org/10.1007/s12010-009-8822-6 PMid:19862491; Godfrey T. 1995. Lipases for industrial use. Lipid Technology.; Goswami D, De S, Basu JK. 2012. Effects of process variables and additives on mustard oil hydrolysis by porcine pancreas lipase. Braz. J. Chem. Eng. 29 (3), 449-460. https://doi.org/10.1590/S0104-66322012000300002; Kaewthong W, Sirisansaneeyakul S, Prasertsan P, H-Kittikun A. 2005. Continuous production of monoacylglycerols by glycerolysis of palm olein by immobilized lipase. Process Biochem. 40, 218-222. https://doi.org/10.1016/j.procbio.2003.12.002; Kapoor M, Gupta MN. 2012. Obtaining monoglycerides by esterification of glycerol with palmitic acid using some high activity preparations of Candida antarctica lipase B. Process Biochem. 47, 503-508. https://doi.org/10.1016/j.procbio.2011.12.009; Narvaez Rincón PC, Sánchez FJ, Alfonso Torres J, Ponce de León LF. 2004. Producción de ésteres metílicos de ácidos grasos: variables asociadas al proceso de transformación. Ing. Invest. 24 (002), 41-50.; Noureddini H, Harmeier SE. 1998. Enzymatic glycerolysis of soybean oil. J. Am. Oil Chem. Soc. 75 (10), 1359-1365. https://doi.org/10.1007/s11746-998-0183-8; Otadi M, Shahraki A, Goharrokhi M, Bandarchian F. 2011. Reduction of free acids of waste oil by acid-catalyzed esterification. Procedia Eng. 18, 168-174. https://doi.org/10.1016/j.proeng.2011.11.027; Palacios D, Ortega N, Rubio-Rodríguez N, Busto MD. 2019. Lipase-catalyzed glycerolysis of anchovy oil in a solvent-free system: Simultaneous optimization of monoacylglycerol synthesis and end-product oxidative stability. Food Chem. 271, 372-379. https://doi.org/10.1016/j.foodchem.2018.07.184 PMid:30236689; Pereda Marín J, Barriga Mateos F, Álvarez-Mateos P. 2003. Use of residual soapstock from the refining of edible vegetable oils to make biodiesel. Grasas Aceites 54 (2), 130-137. https://doi.org/10.3989/gya.2003.v54.i2.255; Ramesh Rarokar N, Menghani S, Kerzare D, Bhujangrao Khedekar P. 2017. Progress in synthesis of monoglycerides for use in food and pharmaceuticals. J. Exp. Food Chem. 3 (3), 128-134. https://doi.org/10.4172/2472-0542.1000128; Rivera-Pérez C, García Carreño F. 2007. Enzimas lipolíticas y su aplicación en la industria del aceite. BioTecnología 11 (2), 37-45.; Satriana, Normalina A, Meldasari Lubis Y, Adisalamun, Supardan MD, Wan Aida WM. 2016. Diacylglycerol-enriched oil production using chemical glycerolysis. Eur. J. Lipid Sci. Tech. 118 (12), 1880-1890. https://doi.org/10.1002/ejlt.201500489; Singh AK, Mukhopadhyay M. 2012. Olive oil glycerolysis with the immobilized lipase Candida antarctica in a solvent free system. Grasas Aceites 63 (2), 202-208. https://doi.org/10.3989/gya.094811; Solaesa ÁG, Sanz MT, Falkeborg M, Beltrán S, Guo Z. 2016. Production and concentration of monoacylglycerols rich in omega-3 polyunsaturated fatty acids by enzymatic glycerolysis and molecular distillation. Food Chem. 190, 960-967. https://doi.org/10.1016/j.foodchem.2015.06.061 PMid:26213062; Solaesa ÁG, Sanz MT, Beltrán S, Melgosa R. 2016. Kinetic study and kinetic parameters of lipase-catalyzed glycerolysis of sardine oil in a homogeneous medium. Chinese J. Catal. 37. 596-606. https://doi.org/10.1016/S1872-2067(15)61040-3; Subroto E, Supriyanto, Utami T, Hidayat C. 2019. Enzymatic glycerolysis-interesterification of palm stearin-olein blend for synthesis structured lipid containing high mono- and diacylglycerol. Food Sci. Biotechnol. 28 (2), 511-517. https://doi.org/10.1007/s10068-018-0462-6 PMid:30956863 PMCid:PMC6431351; Torres C, Lin B, Hill C.G. 2002. Lipase-catalyzed glycerolysis of an oil rich in eicosapentaenoic acid residues. Biotechnol. Lett. 24, 667-673. https://doi.org/10.1023/A:1015298728683; Valério A, Rovani S, Treichel H, De Oliveira, Oliveira JV. 2010. Optimization of mono and diacylglycerols production from enzymatic glycerolysis in solvent-free systems. Bioproc. Biosyst. Eng. 33, 805-812. https://doi.org/10.1007/s00449-009-0402-1 PMid:20091052; Vázquez L, González N, Reglero G, Torres C. 2016. Solvent-Free Lipase-Catalyzed Synthesis of Diacylglycerols as Low-Calorie Food Ingredientes. Front. Bioeng. Biotechnol. 4 (6), 1-10. https://doi.org/10.3389/fbioe.2016.00006 PMid:26904539 PMCid:PMC4748054; Wiphum Kaewthonga, Sarote Sirisansaneeyakulb, Poonsuk Prasertsana, AranH-Kittikuna. 2005. Continuous production of monoacylglycerols by glycerolysis of palm olein with immobilized lipase. Process Biochem. 40 (5), 1525-1530. https://doi.org/10.1016/j.procbio.2003.12.002; Yang T, Rebsdorf M, Engelrud U, Xu X. 2005. Enzymatic Production of Monoacylglycerols Containing Polyunsaturated Fatty Acids through an Efficient Glycerolysis System. J. Agric. Food Chem. 53 (5), 1475-1481. https://doi.org/10.1021/jf048405g PMid:15740027; Yang T, Rebsdorf M, Engelrud U, Xu X. 2005. Monoacylglycerol synthesis via enzymatic glycerolysis using a simple and efficient reaction system. J. Food Lipids. 12, 299-312. https://doi.org/10.1111/j.1745-4522.2005.00025.x; Zaher FA, Saadia M, Aly OS, El-Kinawy. 1998. Lipase - Catalyzed glycerolysis of sunflower oil to produce partial glycerides. Grasas Aceites 49 (5-6), 411-414. https://doi.org/10.3989/gya.1998.v49.i5-6.750; Zhao X, Fan M, Zeng J, Du W, Liu C, Liu D. 2013. Kinetics of lipase recovery from the aqueous phase of biodiesel production by macroporous resin adsorption and reuse of the adsorbed lipase for biodiesel preparation. Enzyme Microb. Tech. 52, 226-233. https://doi.org/10.1016/j.enzmictec.2013.02.006 PMid:23540923; Ziobrowski Z, Kiss K, Krupiczka R, Rotkegel A, Gubicza L, Nemestothy N. 2009. Pervaporation aided enzymatic production of glycerol monostearate in organic solvents. Desalination. 241, 212-217. https://doi.org/10.1016/j.desal.2008.01.067; https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1853
    • الرقم المعرف:
      10.3989/gya.0794191
    • الدخول الالكتروني :
      https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1853
      https://doi.org/10.3989/gya.0794191
    • Rights:
      Copyright (c) 2020 Consejo Superior de Investigaciones Científicas (CSIC) ; https://creativecommons.org/licenses/by/4.0
    • الرقم المعرف:
      edsbas.22CAFD57