Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Inverting brain grey matter models with likelihood-free inference: a tool for trustable cytoarchitecture measurements

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Modelling brain structure, function and variability based on high-field MRI data (PARIETAL); Service NEUROSPIN (NEUROSPIN); Université Paris-Saclay-Institut des Sciences du Vivant Frédéric JOLIOT (JOLIOT); Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut des Sciences du Vivant Frédéric JOLIOT (JOLIOT); Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Inria Saclay - Ile de France; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria); Modèles statistiques bayésiens et des valeurs extrêmes pour données structurées et de grande dimension (STATIFY); Inria Grenoble - Rhône-Alpes; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Kuntzmann (LJK); Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP); Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP); Université Grenoble Alpes (UGA); Modèles et inférence pour les données de Neuroimagerie (MIND); IFR49 - Neurospin - CEA; ANR-20-CHIA-0016,BrAIN,Intelligence Artificielle et Neurosciences(2020); European Project: 757672,H2020 Pilier ERC,NeuroLang(2018)
    • بيانات النشر:
      CCSD
      Melba editors
    • الموضوع:
      2022
    • نبذة مختصرة :
      International audience ; Effective characterisation of the brain grey matter cytoarchitecture with quantitative sensitivity to soma density and volume remains an unsolved challenge in diffusion MRI (dMRI). Solving the problem of relating the dMRI signal with cytoarchitectural characteristics calls for the definition of a mathematical model that describes brain tissue via a handful of physiologically-relevant parameters and an algorithm for inverting the model. To address this issue, we propose a new forward model, specifically a new system of equations, requiring a few relatively sparse b-shells. We then apply modern tools from Bayesian analysis known as likelihood-free inference (LFI) to invert our proposed model. As opposed to other approaches from the literature, our algorithm yields not only an estimation of the parameter vector θ that best describes a given observed data point x_0 , but also a full posterior distribution p(θ|x_0) over the parameter space. This enables a richer description of the model inversion, providing indicators such as credible intervals for the estimated parameters and a complete characterization of the parameter regions where the model may present indeterminacies. We approximate the posterior distribution using deep neural density estimators, known as normalizing flows, and fit them using a set of repeated simulations from the forward model. We validate our approach on simulations using dmipy and then apply the whole pipeline on two publicly available datasets.
    • Relation:
      info:eu-repo/semantics/altIdentifier/arxiv/2111.08693; info:eu-repo/grantAgreement//757672/EU/Accelerating Neuroscience Research by Unifying Knowledge Representation and Analysis Through a Domain Specific Language/NeuroLang; ARXIV: 2111.08693
    • الرقم المعرف:
      10.48550/arXiv.2111.08693
    • الدخول الالكتروني :
      https://inria.hal.science/hal-03417406
      https://inria.hal.science/hal-03417406v4/document
      https://inria.hal.science/hal-03417406v4/file/main.pdf
      https://doi.org/10.48550/arXiv.2111.08693
    • Rights:
      http://creativecommons.org/licenses/by/ ; info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.2273D81