Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Curves in quantum state space, geometric phases, and the brachistophase

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      Institute of Physics
    • الموضوع:
      2023
    • Collection:
      University of Liège: ORBi (Open Repository and Bibliography)
    • نبذة مختصرة :
      peer reviewed ; Given a curve in quantum spin state space, we inquire what is the relation between its geometry and the geometric phase accumulated along it. Motivated by Mukunda and Simon’s result that geodesics (in the standard Fubini-Study metric) do not accumulate geometric phase, we find a general expression for the derivatives (of various orders) of the geometric phase in terms of the covariant derivatives of the curve. As an application of our results, we put forward the brachistophase problem: given a quantum state, find the (appropriately normalized) Hamiltonian that maximizes the accumulated geometric phase after time τ—we find an analytical solution for all spin values, valid for small τ. For example, the optimal evolution of a spin coherent state consists of a single Majorana star separating from the rest and tracing out a circle on the Majorana sphere.
    • ISSN:
      1751-8113
      1751-8121
    • Relation:
      https://iopscience.iop.org/article/10.1088/1751-8121/acdcd2; urn:issn:1751-8113; urn:issn:1751-8121; https://orbi.uliege.be/handle/2268/307291; info:hdl:2268/307291; https://orbi.uliege.be/bitstream/2268/307291/1/Chryssomalakos_2023_J._Phys._A__Math._Theor._56_285301.pdf
    • الرقم المعرف:
      10.1088/1751-8121/acdcd2
    • الدخول الالكتروني :
      https://orbi.uliege.be/handle/2268/307291
      https://orbi.uliege.be/bitstream/2268/307291/1/Chryssomalakos_2023_J._Phys._A__Math._Theor._56_285301.pdf
      https://doi.org/10.1088/1751-8121/acdcd2
    • Rights:
      open access ; http://purl.org/coar/access_right/c_abf2 ; info:eu-repo/semantics/openAccess
    • الرقم المعرف:
      edsbas.1E8FC321