Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Combining Public Human Activity Recognition Datasets to Mitigate Labeled Data Scarcity

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Università degli Studi di Milano = University of Milan (UNIMI); Groupe d’Étude en Traduction Automatique/Traitement Automatisé des Langues et de la Parole (GETALP); Laboratoire d'Informatique de Grenoble (LIG); Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ); Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ); Université Grenoble Alpes (UGA); Multimodal Perception and Sociable Interaction (M-PSI); Naval Groupallocation 2023-AD011013233R1 made by GENCI; ANR-19-P3IA-0003,MIAI,MIAI @ Grenoble Alpes(2019); European Project: PE00000014,SERICS
    • بيانات النشر:
      HAL CCSD
      IEEE
    • الموضوع:
      2023
    • Collection:
      Université Grenoble Alpes: HAL
    • الموضوع:
    • نبذة مختصرة :
      IEEE SMARTCOMP 2023 ; International audience ; The use of supervised learning for Human Activity Recognition (HAR) on mobile devices leads to strong classification performances. Such an approach, however, requires large amounts of labeled data, both for the initial training of the models and for their customization on specific clients (whose data often differ greatly from the training data). This is actually impractical to obtain due to the costs, intrusiveness, and time-consuming nature of data annotation. Moreover, even with the help of a significant amount of labeled data, model deployment on heterogeneous clients faces difficulties in generalizing well on unseen data. Other domains, like Computer Vision or Natural Language Processing, have proposed the notion of pre-trained models, leveraging large corpora, to reduce the need for annotated data and better manage heterogeneity. This promising approach has not been implemented in the HAR domain so far because of the lack of public datasets of sufficient size. In this paper, we propose a novel strategy to combine publicly available datasets with the goal of learning a generalized HAR model that can be fine-tuned using a limited amount of labeled data on an unseen target domain. Our experimental evaluation, which includes experimenting with different state-of-the-art neural network architectures, shows that combining public datasets can significantly reduce the number of labeled samples required to achieve satisfactory performance on an unseen target domain.
    • Relation:
      info:eu-repo/semantics/altIdentifier/arxiv/2306.13735; info:eu-repo/grantAgreement//PE00000014/EU/SEcurity and RIghts in the CyberSpace/SERICS; hal-04275000; https://hal.science/hal-04275000; ARXIV: 2306.13735
    • الرقم المعرف:
      10.1109/SMARTCOMP58114.2023.00022
    • الدخول الالكتروني :
      https://doi.org/10.1109/SMARTCOMP58114.2023.00022
      https://hal.science/hal-04275000
    • الرقم المعرف:
      edsbas.1D58EDD6