Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Evaluation of information processing capacity of bacterial metabolism through regression problem solving

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      MICrobiologie de l'ALImentation au Service de la Santé (MICALIS); AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE); Mathématiques et Informatique Appliquées (MIA Paris-Saclay); Institut des Systèmes Complexes - Paris Ile-de-France (ISC-PIF); École normale supérieure - Cachan (ENS Cachan)-Université Paris 1 Panthéon-Sorbonne (UP1)-École polytechnique (X); Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Institut Curie Paris -Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS); Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE); Université Paris-Saclay; Translational Innovation in Medicine and Complexity / Recherche Translationnelle et Innovation en Médecine et Complexité - UMR 5525 (TIMC); VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP); Université Grenoble Alpes (UGA); University of Manchester Manchester; INSA Toulouse; Toulouse Biotechnology Institute; Université de Toulouse; ANR-21-CE45-0021,AMN,Reseaux Métaboliques Artificiels(2021)
    • بيانات النشر:
      CCSD
    • الموضوع:
      2023
    • Collection:
      Université Grenoble Alpes: HAL
    • الموضوع:
    • نبذة مختصرة :
      National audience ; Throughout evolution, bacteria have acquired the ability to sense variations of the concentrations of nutrients in their growth medium. According to the medium composition, they adapt their metabolic behaviour by activating or repressing the appropriate metabolic pathways through a wide array of regulation mechanisms including transcriptional, translational or post-translational responses. Bacterial metabolism can therefore be compared to an algorithm taking as inputs the media composition and yielding as outputs metabolic fluxes describing its metabolic phenotype. Our work focuses on this perspective of the bacterial metabolism as an information processing unit. Our objective is to demonstrate that E. coli's metabolism is capable of neural-like computation and to assess to what extend it can solve classical machine-learning problems (whether regression or classification). Our first step has been to generate an accurate model of E. coli's metabolism, using the AMN (Artificial Metabolic Network), a metabolic hybrid model previously developed in our lab. This model has then been used to solve machinelearning problems of different complexities in order to assess the capacity of our metabolic model.
    • الدخول الالكتروني :
      https://hal.science/hal-04287846
      https://hal.science/hal-04287846v1/document
      https://hal.science/hal-04287846v1/file/Poster_BioSynSys23v3%20%281%29.pdf
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.1D479C10