Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

SepF is the FtsZ anchor in archaea, with features of an ancestral cell division system

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Biologie Evolutive de la Cellule Microbienne - Evolutionary Biology of the Microbial Cell; Institut Pasteur Paris (IP)-Centre National de la Recherche Scientifique (CNRS); Microbiologie structurale - Structural Microbiology (Microb. Struc. (UMR_3528 / U-Pasteur_5)); Institut Pasteur Paris (IP)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité); Ecole Doctorale Complexité du Vivant (ED515); Sorbonne Université (SU); Plateforme BioImagerie Ultrastructurale – Ultrastructural BioImaging Platform (UTechS UBI); Institut Pasteur Paris (IP); Biophysique Moléculaire (plateforme) - Molecular Biophysics (platform); Universität Wien = University of Vienna; Bioinformatics / Bioinformática Montevideo; Institut Pasteur de Montevideo; Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP); Pathogénèse des Bactéries Anaérobies / Pathogenesis of Bacterial Anaerobes (PBA (U-Pasteur_6)); This work was partially supported by grants from the Institut Pasteur (Paris), the CNRS (France) and the Agence Nationale de la Recherche (PhoCellDiv, ANR-18-CE11-0017-01 and ArchEvol, ANR-16-CE02-0005-01). N.P. is supported by a Pasteur-Roux Postdoctoral Fellowship from the Institut Pasteur (Paris). A.S. and D.M. are part of the Pasteur - Paris University (PPU) International PhD Program, funded by the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No 665807. M.G. thanks support from Programa de Desarrollo de las Ciencias Básicas (PEDECIBA) and Agencia Nacional de Investigación e Innovación (ANII), Uruguay.; We thank A. Chenal for help with the lipid interaction studies. We gratefully acknowledge the core facilities at the Institut Pasteur C2RT, A. Haouz, P. Weber, C. Pissis (PFC). We thank the staff of the synchrotron SOLEIL for assistance and support in using beamlines PX1 and PX2. We thank A. Salle for help with the 3D SIM. We gratefully acknowledge the UTechS Photonic BioImaging (Imagopole), C2RT, Institut Pasteur (Paris, France) as well as the France–BioImaging infrastructure network supported by the French National Research Agency (ANR-10–INSB–04; Investments for the Future), and the Région Ile-de-France (program Domaine d’Intérêt Majeur-Malinf) for the use of the Zeiss LSM 780 Elyra PS1 microscope. We acknowledge technical assistance by Barbara Reischl.; ANR-18-CE11-0017,PhoCellDiv,Mécanismes moléculaires phospho-dépendants de l'assemblage et de la régulation du divisome bactérien(2018); ANR-16-CE02-0005,Arch-Evol,Approches phylogenomiques pour étudier l'origine et évolution des Archées(2016); European Project: 665807,H2020,H2020-MSCA-COFUND-2014,PASTEURDOC(2015)
    • بيانات النشر:
      HAL CCSD
      Nature Publishing Group
    • الموضوع:
      2021
    • Collection:
      Réseau International des Instituts Pasteur, Paris: HAL-RIIP
    • نبذة مختصرة :
      International audience ; Most archaea divide by binary fission using an FtsZ-based system similar to that of bacteria, but they lack many of the divisome components described in model bacterial organisms. Notably, among the multiple factors that tether FtsZ to the membrane during bacterial cell constriction, archaea only possess SepF-like homologs. Here, we combine structural, cellular, and evolutionary analyses to demonstrate that SepF is the FtsZ anchor in the human-associated archaeon Methanobrevibacter smithii. 3D super-resolution microscopy and quantitative analysis of immunolabeled cells show that SepF transiently co-localizes with FtsZ at the septum and possibly primes the future division plane. M. smithii SepF binds to membranes and to FtsZ, inducing filament bundling. High-resolution crystal structures of archaeal SepF alone and in complex with the FtsZ C-terminal domain (FtsZ CTD) reveal that SepF forms a dimer with a homodimerization interface driving a binding mode that is different from that previously reported in bacteria. Phylogenetic analyses of SepF and FtsZ from bacteria and archaea indicate that the two proteins may date back to the Last Universal Common Ancestor (LUCA), and we speculate that the archaeal mode of SepF/FtsZ interaction might reflect an ancestral feature. Our results provide insights into the mechanisms of archaeal cell division and pave the way for a better understanding of the processes underlying the divide between the two prokaryotic domains.
    • Relation:
      info:eu-repo/semantics/altIdentifier/pmid/34088904; info:eu-repo/grantAgreement//665807/EU/Institut Pasteur International Docotal Program/PASTEURDOC; hal-03251652; https://hal.sorbonne-universite.fr/hal-03251652; https://hal.sorbonne-universite.fr/hal-03251652/document; https://hal.sorbonne-universite.fr/hal-03251652/file/s41467-021-23099-8.pdf; PUBMED: 34088904
    • الرقم المعرف:
      10.1038/s41467-021-23099-8
    • Rights:
      http://creativecommons.org/licenses/by/ ; info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.1CDB52D3