Contributors: Université de Lille; Université Côte d'Azur (UniCA); Istituto Nazionale di Ottica Firenze (INO-CNR); National Research Council of Italy; QTI S.r.l., L.go E. Fermi 6, Firenze 50125, Italy. (QTI); Department of Physics, University of Virginia; University of Virginia; ANR-22-PETQ-0013,OQULUS,Ordinateurs quantiques à base de lumière en variables discrètes et continues(2022); ANR-20-CE47-0012,SPHIFA,Photonique Silicium pour le developpement d'applications quantiques basées sur l'intrication de grande dimension dans le domaine fre´quentiel(2020); ANR-11-LABX-0007,CEMPI,Centre Européen pour les Mathématiques, la Physique et leurs Interactions(2011); ANR-16-IDEX-0004,ULNE,ULNE(2016)
نبذة مختصرة : The frequency comb of a multimode interferometer offers exceptional scalability potential for field-encoded quantum information. However, the staple field detection method, homodyne detection, cannot access quantum information in the whole comb because some spectral quadratures (and their asymmetries with respect to the LO) are out of reach. We present here the first general approach to make arbitrary, one-shot measurements of a multimode quantum optical source, something that is required for photonic quantum computing and is not possible when using homodyne detection with a pulse-shaped LO. This approach uses spectral mode-matching, which can be understood as interferometry with a memory effect. We derive a complete formalism and propose an implementation by microcavity arrays.
No Comments.