Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Persistence Diagram Estimation of Multivariate Piecewise Hölder-continuous Signals

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Understanding the Shape of Data (DATASHAPE); Inria Sophia Antipolis - Méditerranée (CRISAM); Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Inria Saclay - Ile de France; Institut National de Recherche en Informatique et en Automatique (Inria); Laboratoire de Mathématiques d'Orsay (LMO); Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS); ANR-19-CHIA-0001,TopAI,TopAI : Analyse Topologique des Données pour l'apprentissage et l'IA(2019)
    • بيانات النشر:
      HAL CCSD
    • الموضوع:
      2024
    • Collection:
      HAL Université Côte d'Azur
    • نبذة مختصرة :
      To our knowledge, the analysis of convergence rates for persistence diagram estimation fromnoisy signals had predominantly relied on lifting signal estimation results through sup norm (orother functional norm) stability theorems. We believe that moving forward from this approachcan lead to considerable gains. We illustrate it in the setting of Gaussian white noise model. Weexamine from a minimax perspective, the inference of persistence diagram (for sublevel sets filtration). We show that for piecewise Hölder-continuous functions, with control over the reach ofthe discontinuities set, taking the persistence diagram coming from a simple histogram estimatorof the signal, permit to achieve the minimax rates known for Hölder-continuous functions.
    • Relation:
      hal-04524998; https://hal.science/hal-04524998; https://hal.science/hal-04524998v2/document; https://hal.science/hal-04524998v2/file/2403.19396v2.pdf
    • الدخول الالكتروني :
      https://hal.science/hal-04524998
      https://hal.science/hal-04524998v2/document
      https://hal.science/hal-04524998v2/file/2403.19396v2.pdf
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.1C32CF5E