Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Preventing premature convergence and proving the optimality in evolutionary algorithms

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      ENAC - Laboratoire de Mathématiques Appliquées, Informatique et Automatique pour l'Aérien (MAIAA); Ecole Nationale de l'Aviation Civile (ENAC); Algorithmes Parallèles et Optimisation (IRIT-APO); Institut de recherche en informatique de Toulouse (IRIT); Université Toulouse Capitole (UT Capitole); Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse - Jean Jaurès (UT2J); Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3); Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP); Université de Toulouse (UT)-Toulouse Mind & Brain Institut (TMBI); Université Toulouse - Jean Jaurès (UT2J); Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3); Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole); Université de Toulouse (UT)
    • بيانات النشر:
      HAL CCSD
    • الموضوع:
      2013
    • Collection:
      Université Toulouse III - Paul Sabatier: HAL-UPS
    • الموضوع:
    • نبذة مختصرة :
      http://ea2013.inria.fr//proceedings.pdf ; International audience ; Evolutionary Algorithms (EA) usually carry out an efficient exploration of the search-space, but get often trapped in local minima and do not prove the optimality of the solution. Interval-based techniques, on the other hand, yield a numerical proof of optimality of the solution. However, they may fail to converge within a reasonable time due to their inability to quickly compute a good approximation of the global minimum and their exponential complexity. The contribution of this paper is a hybrid algorithm called Charibde in which a particular EA, Differential Evolution, cooperates with a Branch and Bound algorithm endowed with interval propagation techniques. It prevents premature convergence toward local optima and outperforms both deterministic and stochastic existing approaches. We demonstrate its efficiency on a benchmark of highly multimodal problems, for which we provide previously unknown global minima and certification of optimality.
    • ISBN:
      978-2-9539267-3-6
      2-9539267-3-9
    • Relation:
      hal-00880716; https://hal.science/hal-00880716; https://hal.science/hal-00880716/document; https://hal.science/hal-00880716/file/ea2013.pdf
    • الدخول الالكتروني :
      https://hal.science/hal-00880716
      https://hal.science/hal-00880716/document
      https://hal.science/hal-00880716/file/ea2013.pdf
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.1C1AD800