Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Fotografia científica i astronomia: La tecnologia aplicada al coneixement de l’univers ; Scientific photography and astronomy: Technology applied to understanding the universe ; Fotografía científica y astronomía: La tecnología aplicada al conocimiento del universo

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      Universitat de València
    • الموضوع:
      2024
    • Collection:
      Universitat de València: Open Journal Systems
    • نبذة مختصرة :
      El 1925 Edwin Hubble va fer el primer pas per expandir en diversos ordres de magnitud la mida de l’univers conegut utilitzant els precaris mètodes fotogràfics disponibles: plaques de vidre amb emulsions fotosensibles. A través del registre de les fluctuacions periòdiques a la brillantor de certes estrelles (cefeides) mitjançant fotografies, Hubble va demostrar que la distància entre Andròmeda i la Terra era molt més gran del que es creia en aquella època. Andròmeda, fins aleshores considerada una nebulosa, devia ser en realitat una altra galàxia molt diferent de la nostra. De sobte, la mida estimada de l’univers va passar de centenars de milers d’anys llum a uns quants milers de milions d’anys llum. Des de llavors, la sinergia entre tecnologia fotogràfica i astronomia no ha deixat d’augmentar. ; In 1925, Edwin Hubble took the first step towards increasing the size of the known universe by several orders of magnitude using the precarious photographic methods available at the time: glass plates and photosensitive emulsions. Analysing periodic variations in the brightness of certain stars (Cepheids) through photographs, Hubble was able to show that the distance between Andromeda and the Earth was much greater than previously thought. Thus, Andromeda, previously thought to be a nebula, had to be a galaxy different from our own. Suddenly, the estimated size of the universe went from a few hundred thousand light years to a few billion light years. Since then, the synergy between photographic technology and astronomy has continued to grow. ; En 1925 Edwin Hubble dio el primer paso para expandir en varios órdenes de magnitud el tamaño del universo conocido utilizando los precarios métodos fotográficos disponibles: placas de cristal con emulsiones fotosensibles. A través del registro de las fluctuaciones periódicas en el brillo de ciertas estrellas (cefeidas) mediante fotografías, Hubble demostró que la distancia entre Andrómeda y la Tierra era mucho mayor de lo estimado en la época. Andrómeda, hasta entonces considerada ...
    • File Description:
      application/pdf
    • Relation:
      https://ojs.uv.es/index.php/Metode/article/view/24625/24131; Benneke, B., Wong, I., Piaulet, C., Knutson, H. A., Lothringer, J., Morley, C. V, Crossfield, I. J. M., Gao, P., Greene, T. P., Dressing, C., Dragomir, D., Howard, A. W., McCullough, P. R., Kempton, E. M. R., Fortney, J., & Fraine, J. (2019). Water vapor and clouds on the habitable-zone sub-Neptune exoplanet K2-18b. The Astrophysical Journal Letters , 887 (1), L14. https://doi.org/10.3847/2041-8213/ab59dc Böker, T., Arribas, S., Lützgendorf, N., Alves de Oliveira, C., Beck, T. L., Birkmann, S., Bunker, A. J., Charlot, S., de Marchi, G., Ferruit, P., Giardino, G., Jakobsen, P., Kumari, N., López-Caniego, M., Maiolino, R., Manjavacas, E., Marston, A., Moseley, S. H., Muzerolle, J., … Zeidler, P. (2022). The near-infrared spectrograph (NIRSpec) on the James Webb Space Telescope. III. Integral-field spectroscopy. Astronomy & Astrophysics , 661 , A82. https://doi.org/10.1051/0004-6361/202142589 Bryson, S., Kunimoto, M., Kopparapu, R. K., Coughlin, J. L., Borucki, W. J., Koch, D., Aguirre, V. S., Allen, C., Barentsen, G., Batalha, N. M., Berger, T., Boss, A., Buchhave, L. A., Burke, C. J., Caldwell, D. A., Campbell, J. R., Catanzarite, J., Chandrasekaran, H., Chaplin, W. J., … Zamudio, K. A. (2021). The occurrence of rocky habitable-zone planets around solar-like stars from Kepler data. The Astronomical Journal , 161 (1), 36. https://doi.org/10.3847/1538-3881/abc418 Bunn, E. F., & Hogg, D. W. (2009). The kinematic origin of the cosmological redshift. American Journal of Physics , 77 (8), 688–694. https://doi.org/10.1119/1.3129103 Cassinello Espinosa, A. (2019). La medida del cielo: Momentos estelares en las ciencias del cosmos . Escolar y Mayo Editores S. L. Gardner, J. P., Mather, J. C., Clampin, M., Doyon, R., Greenhouse, M. A., Hammel, H. B., Hutchings, J. B., Jakobsen, P., Lilly, S. J., Long, K. S., Lunine, J. I., Mccaugherean, M. J., Mountain, M., Nella, J., Rieke, G. H., Rieke, M. J., Rix, H., Smith, E. P., Sonneborn, G., … Wright, G. S. (2006). The James Webb space telescope. Space Science Reviews , 123 (4), 485–606. https://doi.org/10.1007/s11214-006-8315-7 Harrison, E. (1993). The redshift-distance and velocity-distance laws. The Astrophysical Journal, 403 , 28–31. Henden, A. A., Welch, D. L., Terrell, D., & Levine, S. E. (2009). The AAVSO photometric all-sky survey (APASS). American Astronomical Society Meeting Abstracts , 214 , 402–407. Hubble, E. (1929). A relation between distance and radial velocity among extra-galactic nebulae. Proceedings of the National Academy of Sciences , 15 (3), 168–173. https://doi.org/10.1073/pnas.15.3.168 Hubble, E., & Humason, M. L. (1931). The velocity-distance relation among extra-galactic nebulae. The Astrophysical Journal , 74 , 43–80. https://doi.org/10.1086/143323 Huggins, W., & Miller, W. A. (1864). On the spectra of some fixed stars. Philosophical Transactions of the Royal Society of London , 154 , 413–445. https://doi.org/10.1098/rstl.1864.0012 Leavitt, H. S., & Pickering, E. C. (1912). Periods of 25 variable stars in the Small Magellanic Cloud. Harvard College Observatory Circular , 173 , 1–3. Libby-Roberts, J. E., Berta-Thompson, Z. K., Désert, J.-M., Masuda, K., Morley, C. V., Lopez, E. D., Deck, K. M., Fabrycky, D., Fortney, J. J., Line, M. R., Sanchis-Ojeda, R., & Winn, J. N. (2020). The featureless transmission spectra of two super-puff planets. The Astronomical Journal , 159 (2), 57. https://doi.org/10.3847/1538-3881/ab5d36 Mayor, M., & Queloz, D. (1995). A Jupiter-mass companion to a solar-type star. Nature , 378 (6555), 355–359. https://doi.org/10.1038/378355a0 Petigura, E. A., Howard, A. W., & Marcy, G. W. (2013). Prevalence of Earth-size planets orbiting Sun-like stars. Proceedings of the National Academy of Sciences of the United States of America , 110( 48), 19273–19278. https://doi.org/10.1073/pnas.1319909110 Rossiter, M. W. (1980). “Women’s work” in science, 1880-1910. ISIS , 71 (3), 381–398. https://doi.org/10.1086/352540 Shapley, H., & Curtis, H. D. (1921). The scale of the universe. Bulletin of the National Research Council , 2 (11), 171–217. https://archive.org/details/scaleofuniverse00shap Slipher, V. M. (1915). Spectrographic observations of nebulae. Popular Astronomy , 23 , 21–24. Taton, R., & Curtis, W. (1995). Planetary astronomy from the Renaissance to the rise of Astrophysics: Part B: The Eighteenth and Nineteenth centuries. Cambridge University Press.; https://ojs.uv.es/index.php/Metode/article/view/24625
    • الرقم المعرف:
      10.7203/metode.14.24625
    • Rights:
      Copyright (c) 2023 CC BY SA ; http://creativecommons.org/licenses/by-sa/4.0
    • الرقم المعرف:
      edsbas.1A7D6698