Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Difficulties arising when PS-InSAR displacement measurements are compared to results from geomechanical and groundwater flow computations.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • الموضوع:
      2023
    • Collection:
      University of Liège: ORBi (Open Repository and Bibliography)
    • نبذة مختصرة :
      Interferometric Synthetic Aperture Radar (InSAR) technology has been used to detect the location and magnitude of ground deformation for the past 30 years, providing cost-effective measurements with a fine resolution and precision within centimeters under ideal conditions. Persistent Scatterer InSAR Interferometry (PS-InSAR) is an InSAR algorithm that has been developed to overcome decorrelation due to changes in the physical characteristics of the surface over time that limit the InSAR applications. PS-InSAR processing has been used to identify multiple localized land subsidence in the Antwerp and Leuven areas in Belgium. In Antwerp, the harbour was gradually developed, leading to dock excavations in a compressible estuary polders environment and PS-InSAR was used to detect, map and study the ground displacements. In Leuven, significant subsidence was observed through the city and the suburbs, potentially due to delayed consolidation in compressible, low permeability aquitards. One of the possible cause of these subsidence phenomena is related to variation in groundwater levels resulting in consolidation processes. To test this hypothesis, geomechanical calculations coupled to groundwater flow models are carried out to simulate the vertical displacements. The results are compared to PS-InSAR-derived subsidence observations for a better understanding of subsurface consolidation mechanisms. However, there are several practical and conceptual challenges that must be considered when comparing InSAR measurements to results from hydrogeological and geomechanical models. One issue is the choice of the appropriate modeling scale, as subsidence may occur locally but also regionally as influenced by groundwater pore pressure variations occurring at different scales. Another challenge lies in the selection of the appropriate conceptual assumptions linked to the groundwater flow and geomechanical models. Indeed, in addition, uncertainty in the model parameter values is a typical source of uncertainty in the model results. ...
    • Relation:
      https://orbi.uliege.be/handle/2268/302356; info:hdl:2268/302356; https://orbi.uliege.be/bitstream/2268/302356/1/Abstract_EGU2023_AM.pdf
    • الرقم المعرف:
      10.5194/egusphere-egu23-16384
    • Rights:
      open access ; http://purl.org/coar/access_right/c_abf2 ; info:eu-repo/semantics/openAccess
    • الرقم المعرف:
      edsbas.1A42838B