Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Recognition of the condition of construction materials using small datasets and handcrafted features

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • الموضوع:
      2023
    • Collection:
      TU Berlin: Deposit Once
    • نبذة مختصرة :
      We propose using handcrafted features extracted from small datasets to classify the conditions of the construction materials. We hypothesize that features such as the color, roughness, and reflectance of a material surface can be used to identify details of the material. To test the hypothesis, we have developed a pre-trained model to classify material conditions based on reflectance, roughness and color features extracted from image data collected in a controlled (lab) environment. The knowledge learned in the pre-trained model is finally transferred to classify material conditions from a construction site (i.e., an uncontrolled environment). To demonstrate the proposed method, 80 data points were produced from the images collected under a controlled environment and used to develop a pre-trained model. The pre-trained model was re-trained to adapt to the real construction environment using 33 new data points generated through a separate process using images collected from a construction site. The pre-trained model achieved 93%; after retraining the model with the data from the actual site, the accuracy had a small decrease as expected, but still was promising with an 83% accuracy.
    • File Description:
      application/pdf
    • ISSN:
      1874-4753
    • Relation:
      https://depositonce.tu-berlin.de/handle/11303/18114; https://doi.org/10.14279/depositonce-16907
    • الرقم المعرف:
      10.14279/depositonce-16907
    • الدخول الالكتروني :
      https://depositonce.tu-berlin.de/handle/11303/18114
      https://doi.org/10.14279/depositonce-16907
    • Rights:
      https://creativecommons.org/licenses/by/4.0/
    • الرقم المعرف:
      edsbas.18C0DD20