Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Reversed Electron Transfer in Dual Single Atom Catalyst for Boosted Photoreduction of CO₂. ; Reversed Electron Transfer in Dual Single Atom Catalyst for Boosted Photoreduction of CO2

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      Wiley
    • الموضوع:
      2023
    • Collection:
      The University of Adelaide: Digital Library
    • نبذة مختصرة :
      Photogenerated charge localization on material surfaces significantly affects photocatalytic performance, especially for multi-electron CO2 reduction. Dual single atom (DSA) catalysts with flexibly designed reactive sites have received significant research attention for CO2 photoreduction. However, the charge transfer mechanism in DSA catalysts remains poorly understood. Here we report for the first time a reversed electron transfer mechanism on Au and Co DSA catalysts. In situ characterizations confirm that for CdS nanoparticles (NPs) loaded with Co or Au single atoms, photogenerated eletrons are localized around the single atom of Co or Au. In DSA catalysts however electrons are delocalized from Au and accumulate around Co atoms. Importantly, combined advanced spectroscopic findings and theoretical computation evidence that this reversed electron transfer in Au/Co DSA boosts charge redistribution and activation of CO2 molecules, leading to highly significantly increased photocatalytic CO2 reduction, for example, Au/Co DSA loaded CdS exhibits, respectively, ca. 2800% and 700% greater yields for CO and CH4 compared with that for CdS alone. Reversed electron transfer in DSA can be used for practical design for charge redistribution and to boost photoreduction of CO2 . Findings will be of benefit to researchers and manufacturers in DSA loaded catalysts for generation of solar fuels. ; Yanzhao Zhang, Bernt Johannessen, Peng Zhang, Jinlong Gong, Jingrun Ran, and Shi-Zhang Qiao
    • File Description:
      application/pdf
    • ISSN:
      0935-9648
      1521-4095
    • Relation:
      http://purl.org/au-research/grants/arc/DP230102027; http://purl.org/au-research/grants/arc/LP210301397; http://purl.org/au-research/grants/arc/FL170100154; http://purl.org/au-research/grants/arc/DE200100629; Advanced Materials, 2023; 35(44):1-9; https://hdl.handle.net/2440/139629; Zhang, Y. [0000-0003-2894-4727]; Qiao, S.-Z. [0000-0002-1220-1761] [0000-0002-4568-8422]
    • الرقم المعرف:
      10.1002/adma.202306923
    • Rights:
      ©2023 The Authors. Advanced Materials published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
    • الرقم المعرف:
      edsbas.188685AE