نبذة مختصرة : For the first time, the use of stannate-based sorbents was investigated as high temperature CO2 sorption to evaluate their potential to contribute towards reducing carbon emissions. The sorption capacity and kinetics of commercial tin oxide, sodium, potassium and calcium stannates and lab synthesised potassium stannates were tested using thermogravimetric analysis. Commercial K2SnO3 was found to possess the largest CO2 uptake capacity (2.77 mmol CO2/g or 12.2 wt%) at 700 °C, which is among the highest for potassium sorbents, but the CO2 desorption was not successful. On the contrary, the in-house synthesised K-stannate (K-B) using facile solid-state synthesis outperformed the other sorbents, resulting in a CO2 uptake of 7.3 wt% after 5 min, an adsorption rate (0.016 mg/s) one order of magnitude higher than the other stannates, and stability after 40 cycles. The XRD and XPS analyses showed that K-B contains a mixture of K2SnO3 (76%) and K4SnO4 (21%), while the Scherrer crystal sizes confirmed good resistance to sintering for the potassium stannates. Among the apparent kinetic model tested, the pseudo-second order model was the most suitable to predict the CO2 sorption process of K-B, indicating that chemical adsorption is dominant, while film-diffusion resistance and intra-particle diffusion resistance governed the sorption process in K-B. In summary, this work shows that solid-state synthesised potassium stannate could be an effective sorbent for high temperature separation, and additional work is required to further elucidate its potential.
No Comments.