Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Spectral and norm estimates for matrix-sequences arising from a finite difference approximation of elliptic operators

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      Uppsala universitet, Avdelningen för beräkningsvetenskap
      Uppsala universitet, Numerisk analys
      Catania Univ, Dept Math & Informat, Viale A Doria 6, I-95125 Catania, Italy.
      Insubria Univ, Dept Sci & High Technol, Via Valleggio 11, I-22100 Como, Italy.
      Catania Univ, Dept Math & Informat, Viale A Doria 6, I-95125 Catania, Italy.;Ist Nazl Geofis & Vulcanol, Piazza Roma 2, I-95125 Catania, Italy.
      Oxford Brookes Univ, Sch Engn Comp & Math, Oxford OX33 1HX, England.;Catania Univ, Dept Math & Informat, Viale A Doria 6, I-95125 Catania, Italy.
    • الموضوع:
      2023
    • Collection:
      Uppsala University: Publications (DiVA)
    • نبذة مختصرة :
      When approximating elliptic problems by using specialized approximation techniques, we obtain large structured matrices whose analysis provides information on the stability of the method. Here we provide spectral and norm estimates for matrix-sequences arising from the approximation of the Laplacian via ad hoc finite differences. The analysis involves several tools from matrix theory and in particular from the setting of Toeplitz operators and Generalized Locally Toeplitz matrix-sequences. Several numerical experiments are conducted, which confirm the correctness of the theoretical findings.
    • File Description:
      application/pdf
    • Relation:
      Linear Algebra and its Applications, 0024-3795, 2023, 667, s. 10-43; ISI:000958582800001
    • الرقم المعرف:
      10.1016/j.laa.2023.03.005
    • الدخول الالكتروني :
      http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-500600
      https://doi.org/10.1016/j.laa.2023.03.005
    • Rights:
      info:eu-repo/semantics/openAccess
    • الرقم المعرف:
      edsbas.14BE8682