Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Incipient space weathering on asteroid 162173 Ryugu recorded by pyrrhotite

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Friedrich-Schiller-Universität = Friedrich Schiller University Jena Jena, Germany; Luxembourg Institute of Science and Technology (LIST); Division of Earth and Planetary Sciences Kyoto; Kyoto University; Osaka Metropolitan University; Hiroshima University; Kochi Institute for Core Sample Research; Japan Agency for Marine-Earth Science and Technology (JAMSTEC); Kyushu University; Department of Earth and Planetary Science Tokyo; Graduate School of Science Tokyo; The University of Tokyo (UTokyo)-The University of Tokyo (UTokyo); Institute of Space and Astronautical Science (ISAS); Japan Aerospace Exploration Agency Sagamihara (JAXA); The University of Tokyo (UTokyo); Department of Earth and Planetary Materials Science Sendai; Tohoku University Sendai; Hawaii Institute of Geophysics and Planetology (HIGP); University of Hawai‘i Mānoa (UHM); Unité Matériaux et Transformations - UMR 8207 (UMET); Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Supérieure de Chimie de Lille (ENSCL)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS); Institut Michel Eugène Chevreul - FR 2638 (IMEC); Université d'Artois (UA)-Centrale Lille-Institut de Chimie - CNRS Chimie (INC-CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE); Institut de Planétologie et d'Astrophysique de Grenoble (IPAG); Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (Fédération OSUG)-Université Grenoble Alpes (UGA); NASA Langley Research Center Hampton (LaRC); Pennsylvania State University (Penn State); Penn State System; Lunar and Planetary Laboratory Tucson (LPL); University of Arizona; Department of Earth, Atmospheric, and Planetary Sciences West Lafayette (EAPS); Purdue University West Lafayette; Naval Research Laboratory (NRL); Space Research Centre Leicester; University of Leicester; School of Geographical and Earth Sciences Univ Glasgow; University of Glasgow; University of Oxford; University of New South Wales Sydney (UNSW); School of Geographical and Earth Sciences, University of Glasgow; School of Earth and Planetary Sciences Perth; Curtin University; NASA Johnson Space Center (JSC); NASA; Ritsumeikan University; Japan Synchrotron Radiation Research Institute Hyogo (JASRI); University of Chinese Academy of Sciences Beijing (UCAS); Chinese Academy of Sciences Beijing (CAS); Ehime University Matsuyama, Japon; Kindai University; Hokkaido University Sapporo, Japan; Department of Earth and Planetary Sciences Fukuoka; Department of Earth and Planetary Systems Science Hiroshima; National Institute of Polar Research Tokyo (NiPR); Graduate University for Advanced Studies Hayama (SOKENDAI); Kanagawa Institute of Technology; Nagoya University
    • بيانات النشر:
      HAL CCSD
      Wiley
    • الموضوع:
      2024
    • Collection:
      Institut national des sciences de l'Univers: HAL-INSU
    • نبذة مختصرة :
      International audience ; Regolith samples returned from asteroid 162173 Ryugu by the Hayabusa2 mission provide direct means to study how space weathering operates on the surfaces of hydrous asteroids. The mechanisms of space weathering, its effects on mineral surfaces, and the characteristic time scales on which alteration occurs are central to understanding the spectroscopic properties and the taxonomy of asteroids in the solar system. Here, we investigate the behavior of the iron monosulfides mineral pyrrhotite (Fe1−xS) at the earliest stages of space weathering. Using electron microscopy methods, we identified a partially exposed pyrrhotite crystal that morphologically shows evidence for mass loss due to exposure to solar wind ion irradiation. We find that crystallographic changes to the pyrrhotite can be related to sulfur loss from its space‐exposed surface and the diffusive redistribution of resulting excess iron into the interior of the crystal. Diffusion profiles allow us to estimate an order of magnitude of the exposure time of a few thousand years consistent with previous estimates of space exposure. During this interval, the adjacent phyllosilicates did not acquire discernable damage, suggesting that they are less susceptible to alteration by ion irradiation than pyrrhotite.
    • الرقم المعرف:
      10.1111/maps.14176
    • Rights:
      http://creativecommons.org/licenses/by-nc-nd/ ; info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.13B69FA4