نبذة مختصرة : Bacterial extracellular vesicles (BEVs), including outer membrane vesicles, have emerged as a promising new class of vaccines and therapeutics to treat cancer and inflammatory diseases, among other applications. However, clinical translation of BEVs is hindered by a current lack of scalable and efficient purification methods. Here, we address downstream BEV biomanufacturing limitations by developing a method for orthogonal size‐ and charge‐based BEV enrichment using tangential flow filtration (TFF) in tandem with high performance anion exchange chromatography (HPAEC). The data show that size‐based separation coisolated protein contaminants, whereas size‐based TFF with charged‐based HPAEC dramatically improved purity of BEVs produced by probiotic Gram‐negative Escherichia coli and Gram‐positive lactic acid bacteria (LAB). Escherichia coli BEV purity was quantified using established biochemical markers while improved LAB BEV purity was assessed via observed potentiation of anti‐inflammatory bioactivity. Overall, this work establishes orthogonal TFF + HPAEC as a scalable and efficient method for BEV purification that holds promise for future large‐scale biomanufacturing of therapeutic BEV products.
No Comments.