Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Symmetry-based model reduction for approximate stochastic analysis

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Programming Languages for Biological Modeling and Simulation (BioComputing); Laboratoire d'Informatique Fondamentale de Lille (LIFL); Université de Lille, Sciences et Technologies-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lille, Sciences Humaines et Sociales-Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Sciences et Technologies-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lille, Sciences Humaines et Sociales-Centre National de la Recherche Scientifique (CNRS); Calcul Formel (CALFOR)
    • بيانات النشر:
      HAL CCSD
      Springer
    • الموضوع:
      2012
    • Collection:
      Université de Lille 3 - Sciences Humaines et Sociales: HAL
    • الموضوع:
    • نبذة مختصرة :
      International audience ; For models of cell-to-cell communication, with many reactions and species per cell, the computational cost of stochastic simulation soon becomes intractable. Deterministic methods, while computationally more efficient, may fail to contribute reliable approximations for those models. In this paper, we suggest a reduction for models of cell-to-cell communication, based on symmetries of the underlying reaction network. To carry out a stochastic analysis that otherwise comes at an excessive computational cost, we apply a moment closure (MC) approach. We illustrate with a community effect, that allows synchronization of a group of cells in animal development. Comparing the results of stochastic simulation with deterministic and MC approximation, we show the assets of our approach. The reduction presented here is potentially applicable to a broad range of highly regular systems.
    • Relation:
      hal-00713386; https://hal.science/hal-00713386; https://hal.science/hal-00713386/document; https://hal.science/hal-00713386/file/0.pdf
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.12105C72