Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Closed-loop cycles of experiment design, execution, and learning accelerate systems biology model development in yeast

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Laboratoire d'Informatique de Paris-Nord (LIPN); Université Paris 13 (UP13)-Institut Galilée-Université Sorbonne Paris Cité (USPC)-Centre National de la Recherche Scientifique (CNRS); University of Manchester Manchester; Génomique métabolique (UMR 8030); Genoscope - Centre national de séquençage Evry (GENOSCOPE); Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)); Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)); Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université d'Évry-Val-d'Essonne (UEVE)-Centre National de la Recherche Scientifique (CNRS); Brunel University London Uxbridge; Institut de Systématique, Evolution, Biodiversité (ISYEB ); Muséum national d'Histoire naturelle (MNHN)-École Pratique des Hautes Études (EPHE); Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université des Antilles (UA); Programme d'Épigénomique; Université d'Évry-Val-d'Essonne (UEVE)-Centre National de la Recherche Scientifique (CNRS); Cancer Heterogeneity, Plasticity and Resistance to Therapies - UMR 9020 - U 1277 (CANTHER); Institut Pasteur de Lille; Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre Hospitalier Régional Universitaire CHU Lille (CHRU Lille)-Centre National de la Recherche Scientifique (CNRS); Machine Learning in Information Networks (MAGNET); Inria Lille - Nord Europe; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL); Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS); University of London London; The Alan Turing Institute; National Institute of Advanced Industrial Science and Technology (AIST)
    • بيانات النشر:
      HAL CCSD
      National Academy of Sciences
    • الموضوع:
      2019
    • Collection:
      Réseau International des Instituts Pasteur, Paris: HAL-RIIP
    • نبذة مختصرة :
      International audience ; One of the most challenging tasks in modern science is the development of systems biology models: Existing models are often very complex but generally have low predictive performance. The construction of high-fidelity models will require hundreds/thousands of cycles of model improvement, yet few current systems biology research studies complete even a single cycle. We combined multiple software tools with integrated laboratory robotics to execute three cycles of model improvement of the prototypical eukaryotic cellular transformation, the yeast (Saccharomyces cerevisiae) diauxic shift. In the first cycle, a model outperforming the best previous diauxic shift model was developed using bioinformatic and systems biology tools. In the second cycle, the model was further improved using automatically planned experiments. In the third cycle, hypothesis-led experiments improved the model to a greater extent than achieved using high-throughput experiments. All of the experiments were formalized and communicated to a cloud laboratory automation system (Eve) for automatic execution, and the results stored on the semantic web for reuse. The final model adds a substantial amount of knowledge about the yeast diauxic shift: 92 genes (+45%), and 1,048 interactions (+147%). This knowledge is also relevant to understanding cancer, the immune system, and aging. We conclude that systems biology software tools can be combined and integrated with laboratory robots in closed-loop cycles.
    • Relation:
      info:eu-repo/semantics/altIdentifier/pmid/31420515; hal-02297702; https://hal.sorbonne-universite.fr/hal-02297702; https://hal.sorbonne-universite.fr/hal-02297702/document; https://hal.sorbonne-universite.fr/hal-02297702/file/18142.full.pdf; PUBMED: 31420515
    • الرقم المعرف:
      10.1073/pnas.1900548116
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.10E7167B