نبذة مختصرة : Bone, a specialized connective tissue, consists of cells and mineralized extracellular matrix. The main cell types of bone tissue are: the osteoblasts, the osteocytes and the osteoclasts. Osteoblasts produce extracellular matrix, osteoclasts are responsible of its resorption, hence bone physiology is a delicate balance between synthesis of new bone and resorption of the old one. Osteoporosis is a disease in which catabolic activity of osteoclasts overtakes anabolic activity of osteoblasts leading to increased bone resorption and progressive bone fragility. Primary osteoporosis is a common disease among post-menopausal female population. Pathologies as diabetes mellitus, hyperparathyroidism and long-term treatment with glucocorticoids cause secondary osteoporosis. Glucocorticoid-induced osteoporosis is the most common type of secondary osteoporosis. Glucocorticoid treatment is a well known method to induce osteoporosis in animal models, hence it could be an example of “translational model” in which injured bone could be repopulated by stem cells or progenitors in clinical trials. The aim of this thesis is to investigate whether preosteoblasts could repopulate injured bone in an animal model treated with glucocorticoids. Preosteoblasts have been isolated from newborn calvariae of GFP mice. In these cells, expression of the osteogenic marker Runx2 has been assessed by Real time PCR, while osteogenic potential has been analysed by cytochemistry assays to detect alkaline phosphatase and mineralized bone nodules (Alizarin Red and Von Kossa staining). To realize the in vivo model, C57BL/6 three months aged mice have been divided into three groups [group I (n=4): mice not treated with drug and not infused with cells, group II (n=4): mice treated with drug and not infused with cells, group III (n=4): mice treated with drug and infused with cells]. Drug (methylprednisolone) has been administered for one month with a dose of 75 mg/Kg/week. In mice of group III, 5 x 105 GFP preosteoblasts, previously expanded in vitro, have ...
No Comments.