نبذة مختصرة : We systematically investigate Landau-Zener-St\"uckelberg-Majorana (LZSM) interference under chiral-mirror-like symmetry and propose its application to non-adiabatic topological transport of edge states. Protected by this symmetry, complete destructive interference emerges and can be characterized through occupation probability. This symmetry-protected LZSM interference enables state transitions to be achieved within remarkably short time scales. To demonstrate our mechanism, we provide two distinctive two-level systems as examples and survey them in detail. By tuning evolution speed or increasing holding time, the complete destructive interferences are observed. Furthermore, we make use of this mechanism for topological edge states of Su-Schrieffer-Heeger (SSH) chain by taking them as an isolated two-level system. Through carefully designed time sequences, we construct symmetry-protected LZSM interference of topological edge states, enabling non-adiabatic topological transport. Our work unveils an alternative way to study quantum control, quantum state transfer, and quantum communication via non-adiabatic topological transport.
Comment: 10 pages, 3 figures; Comments are welcomed
No Comments.