Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Momentum and kinetic energy transport in supersonic particle-laden turbulent boundary layers

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • الموضوع:
      2024
    • Collection:
      Physics (Other)
    • نبذة مختصرة :
      In the present study, we conduct direct numerical simulations of two-way force-coupled particle-laden compressible turbulent boundary layers at the free-stream Mach number of 2.0 for the purpose of examining the effects of particles on the transport of momentum and kinetic energy. By analyzing turbulent databases with various particle Stokes numbers and mass loadings, we observe that the presence of particles suppresses turbulent fluctuations and can even laminarize flow under high mass loading conditions. This is reflected by the wider and more coherent near-wall velocity streaks, reduced Reynolds stresses, and diminished contributions to skin friction and turbulent kinetic energy production. Additionally, the particle feedback force becomes more dominant in turbulent production near the wall and at small scales as mass loadings increase, which is found to be caused by the residual velocity fluctuations from particles swept down from the outer region. Furthermore, we identify that particle dissipation, resulting from the relative velocity between the fluid and particles, accounts for less than 1% of mean kinetic energy viscous dissipation and less than 10% of turbulent kinetic energy dissipation in the case with the highest mass loading. This suggests a modest impact on the internal energy variation of the fluid if two-way heat coupling is introduced. The elevated mean temperature is found in the near-wall region and is ascribed to the influence of the particle feedback force and reduced turbulent diffusion in high mass loading cases.
      Comment: 31 pages, 14 figures
    • الرقم المعرف:
      edsarx.2406.19724