Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Lipolysis on Lipid Droplets: Mathematical Modelling and Numerical Discretisation

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • الموضوع:
      2024
    • Collection:
      Mathematics
    • نبذة مختصرة :
      Lipolysis is a life-essential metabolic process, which supplies fatty acids stored in lipid droplets to the body in order to match the demands of building new cells and providing cellular energy. In this paper, we present a first mathematical modelling approach for lipolysis, which takes into account that the involved enzymes act on the surface of lipid droplets. We postulate an active region near the surface where the substrates are within reach of the surface-bound enzymes and formulate a system of reaction-diffusion PDEs, which connect the active region to the inner core of lipid droplets via interface conditions. We establish two numerical discretisations based on finite element method and isogeometric analysis, and validate them to perform reliably. For numerical testing purposes, we introduce and analyse a testing model featuring a nontrivial explicit stationary state solution, which describes beside lipolysis also a reverse process (in a physiologically oversimplified way). We prove the unique existence of global and equilibrium solutions. We establish exponential convergence to the equilibrium solutions using the entropy method. We then study the stationary state model and compute explicitly for radially symmetric solutions. Concerning the finite element methods, we show numerically the linear and quadratic convergence of the errors with respect to the $H^{1}$- and $L^{2}$-norms, respectively. Finally, we present numerical simulations of a prototypical PDE model of lipolysis and illustrate that ATGL clustering on lipid droplets can significantly slow down lipolysis.
      Comment: 27 pages, 18 figures
    • الرقم المعرف:
      edsarx.2401.17935